
SCIENCE CHINA
Information Sciences

. REVIEW .

Deep Learning-based Software Engineering:
Progress, Challenges, and Opportunities∗

Xiangping CHEN2*, Xing HU3*, Yuan HUANG4, He JIANG5*, Weixing JI6,

Yanjie JIANG1*, Yanyan JIANG7*, Bo LIU6, Hui LIU6, Xiaochen LI5, Xiaoli LIAN8*,

Guozhu MENG9*, Xin PENG10*, Hailong SUN11*, Lin SHI11*, Bo WANG12*,

Chong WANG10, Jiayi WANG7, Tiantian WANG13*, Jifeng XUAN14*, Xin XIA15,

Yibiao YANG7*, Yixin YANG11, Li ZHANG8, Yuming ZHOU7* & Lu ZHANG1*

1 Key Laboratory of High Confidence Software Technologies (Peking University), Ministry of Education;

School of Computer Science, Peking University, Beijing 100871, China;
2School of Journalism and Communication, Sun Yat-sen University, Guangzhou 510275, China;

3School of Software Technology, Zhejiang University, Hangzhou 310058, China;
4School of Software Engineering, Sun Yat-sen University, Guangzhou 510275, China;

5School of Software, Dalian University of Technology, Dalian 116024, China;
6School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China;
7State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China;

8School of Computer Science and Engineering, Beihang University, Beijing 100191, China;
9Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100864, China;

10School of Computer Science, Fudan University, Shanghai 200433, China;
11State Key Laboratory of Complex & Critical Software Environment (CCSE);

School of Software, Beihang University, Beijing 100191, China;
12School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China;
13School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China;

14School of Computer Science, Wuhan University, Wuhan 430072, China;
15Huawei Technologies, Hangzhou, China

Abstract Researchers have recently achieved significant advances in deep learning techniques, which in

turn has substantially advanced other research disciplines, such as natural language processing, image pro-

cessing, speech recognition, and software engineering. Various deep learning techniques have been successfully

employed to facilitate software engineering tasks, including code generation, software refactoring, and fault

localization. Many papers have also been presented in top conferences and journals, demonstrating the appli-

cations of deep learning techniques in resolving various software engineering tasks. However, although several

surveys have provided overall pictures of the application of deep learning techniques in software engineering,

they focus more on learning techniques, that is, what kind of deep learning techniques are employed and

how deep models are trained or fine-tuned for software engineering tasks. We still lack surveys explaining

the advances of subareas in software engineering driven by deep learning techniques, as well as challenges

and opportunities in each subarea. To this end, in this paper, we present the first task-oriented survey

on deep learning-based software engineering. It covers twelve major software engineering subareas signifi-

cantly impacted by deep learning techniques. Such subareas spread out the through the whole lifecycle of

software development and maintenance, including requirements engineering, software development, testing,

maintenance, and developer collaboration. As we believe that deep learning may provide an opportunity to

revolutionize the whole discipline of software engineering, providing one survey covering as many subareas

as possible in software engineering can help future research push forward the frontier of deep learning-based

software engineering more systematically. For each of the selected subareas, we highlight the major advances

achieved by applying deep learning techniques with pointers to the available datasets in such a subarea. We

also discuss the challenges and opportunities concerning each of the surveyed software engineering subareas.

Keywords Deep Learning, Software Engineering, Software Benchmark, Software Artifact Representation,

Survey

Citation

∗The authors are displayed in alphabetical order.

* Corresponding author (email: chenxp8@mail.sysu.edu.cn, xinghu@zju.edu.cn, jianghe@dlut.edu.cn, yanjiejiang@pku.edu.cn,

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 2

1 Introduction

In recent years, deep learning, first proposed by Hinton et al. [1] in 2006, has achieved highly impressive
advances [2]. Because of the unsupervised-layer-wise training proposed by Hinton et al. [3], the
major obstacle to the training of deep neural networks has been removed. Since then, most artificial
intelligence (AI) researchers have turned to deep learning, constructing deep neural networks containing
dozens, thousands, and even millions of layers [4]. They have also proposed various novel structures
of deep neural networks, such as convolutional neural networks (CNNs) [5], recurrent neural networks
(RNNs) [6], long short-term memory networks (LSTMs) [7], bidirectional LSTM [8], and Transformer [9].
With the advances and popularity of deep learning, hardware vendors like NVIDIA release more powerful
computing devices specially designed for deep learning. All of these together significantly push forward
machine learning techniques and make deep learning-based AI one of the most promising techniques in
the 21st century.

Given significant advances in deep learning, various deep learning techniques have been employed to
fulfill software engineering tasks [10]. Although natural language processing (NLP), image and video pro-
cessing, and speech processing are the major targets of current deep learning techniques, deep learning has
been successfully applied to a wide range of various domains, including data mining [11], machine manu-
facturing [12], biomedical engineering [13] and information security [14]. Concerning software engineering,
researchers have successfully exploited various deep learning techniques for various important tasks, such
as code generation [15], code completion [16], code summarization [17], software refactoring [18], code
search [19], fault localization [20], automated program repair [21], vulnerability detection [22], and soft-
ware testing [23]. In all such tasks, deep learning techniques have been proven useful, substantially
improving the state-of-the-art. One possible reason for the success of deep learning-based software engi-
neering is the significant advances in deep learning techniques. Another possible reason is that various and
massive software engineering data are publicly available for training advanced neural models. With the
popularity of open-source software applications, developers share massive software requirements, source
code, documents, bug reports, patches, test cases, online discussions, and logs and trace relationships
among different artifacts. All such data make training specialized deep neural models for software engi-
neering tasks feasible. To our knowledge, there have already been several surveys on deep learning for
software engineering (e.g., Yang et al. [10], Watson et al. [24] and Niu et al. [25]). Although these surveys
provide some overall pictures of the applications of deep learning for software engineering, there is still a
lack of detailed analyses of the progress, challenges, and opportunities of deep learning techniques from
the perspective of each subarea of software engineering influenced by deep learning.

In this paper, we present a detailed survey covering the applications of deep learning techniques in
major software engineering subareas. We choose to provide one survey to cover the technical research
of deep learning for the whole discipline of software engineering instead of several surveys for different
individual subareas for the following reasons. First, software engineering has one central objective, and
researchers follow a divide-and-conquer strategy to divide software engineering into different subareas.
However, the advances of deep learning may provide us an opportunity to break the boundaries of research
in different subareas to push forward the software engineering discipline as a whole. That is, deep learning
may provide a common means to revolutionize software engineering in the future. Therefore, we believe
that a survey of deep learning in all software engineering subareas may be more beneficial for software
engineering researchers. Second, deep learning belongs to representation learning, and deep learning
techniques for software engineering are thus highly specific to different artifacts in software development.
As different subareas of software engineering typically share some common artifacts, putting different
subareas into one survey would help researchers from different subareas understand the strengths and
weaknesses of different deep learning techniques. For example, a deep learning technique based on source
code may impact all subareas related to the comprehension, generation, and modification of codes.

One issue that raises in preparing this survey is that software engineering is a big discipline and the
applications of deep learning techniques may thus touch some subareas in an uninfluential way. When
facing such a subarea, where there are very few deep learning papers, we feel that these papers can
hardly reflect the essence of deep learning research in that subarea. Therefore, instead of covering all
subareas of software engineering, we focus on subareas where deep learning has already had significant

jyy@nju.edu.cn, lianxiaoli@buaa.edu.cn, mengguozhu@iie.ac.cn, pengxin@fudan.edu.cn, sunhl@buaa.edu.cn, shilin@buaa.edu.cn,

wangbo cs@bjtu.edu.cn, wangtiantian@hit.edu.cn, jxuan@whu.edu.cn , yangyibiao@nju.edu.cn, zhouyuming@nju.edu.cn,

zhanglucs@pku.edu.cn)

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 3

Table 1 Software Engineering Tasks Covered by the Survey

Software Engineering Tasks Number of Surveyed Papers

1 Requirements Engineering 28

2 Code Generation 46

3 Code Search 40

4 Code Summarization 55

5 Software Refactoring 19

6 Code Clone Detection 53

7 Software Defect Prediction 32

8 Bug Finding 114

9 Fault Localization 42

10 Program Repair 64

11 Bug Report Management 51

12 Developer Collaboration 57

Total 601

impacts. Fortunately, deep learning has deeply impacted software engineering, and through the subareas
we selected for surveying in this paper, we can already form a general and insightful picture of deep
learning for software engineering. To achieve our goal, for each of the selected subareas, we highlight
major technical advances, challenges, and opportunities. As far as we know, our survey is the first task-
oriented survey on deep learning-based software engineering, providing a technical overview of software
engineering research driven by deep learning.

Another issue is the alignment between software engineering and deep learning. From the perspective
of software engineering, research efforts are primarily divided into five phases (i.e., requirements, design,
implementation, testing, and maintenance) according to the software development lifecycle, where each
phase may be further divided into different software development activities. Meanwhile, from the perspec-
tive of deep learning, research efforts are grouped by the target learning tasks, where the most distinctive
characteristic of a learning task is its input and output as deep learning is typically of an end-to-end
fashion. That is, using the same form of input–output pairs is typically viewed as being the same task,
but there may be several different tasks for achieving the same goal. To balance the two perspectives,
we grouped the research efforts according to their goals. That is, we viewed research for achieving the
same goal or a set of similar goals as being of one subarea, and accordingly divided the research efforts
into 12 subareas (Table 1 for the numbers of surveyed papers in each subarea): requirements engineering,
code generation, code search, code summarization, software refactoring, code clone detection, software
defect prediction, bug finding, fault localization, program repair, bug report management, and developer
collaboration. We believe that this organization is friendly to readers from both software engineering and
deep learning fields. Each subarea is of clear semantics in software engineering, and the tasks in each
subarea are highly related from the perspective of deep learning. We further arranged the subareas in an
order consistent with the order of the five phases of software development. An additional benefit is that
this organization naturally prevents one subarea from being overcrowded. However, this organization
also demonstrates the following drawbacks. From the software development lifecycle perspective, many
subareas belong to software maintenance, but fewer subareas belong to other phases in our survey. We
would like to emphasize that although this may roughly reflect that more research efforts have been de-
voted to software maintenance, it does not mean that software maintenance is of more importance than
the other phases in software engineering.

In collecting papers for our survey, we focused on publications in major conferences and journals
on software engineering and artificial intelligence between 2000 and 2023. Tables 2 and 3 present the
conferences and journals we searched for papers on deep learning for software engineering. Notably, as we
are not performing a systematic literature review, we did not follow a strict procedure for data collection
(i.e., paper collection). Therefore, although Tables 2 and 3 provide the conferences and journals from
where papers were surveyed, the selection of papers for our survey also underwent subjective judgment
from the authors for appropriation. That is, the primary goal of our survey is to provide readers with a
general picture of technical advances in deep learning-based software engineering but not to characterize
a precise distribution of research efforts across different software engineering subareas. Because there

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 4

Table 2 Conferences Covered by the Survey

ID Abbreviation Conference

1 AAAI AAAI Conference on Artificial Intelligence

2 ACL Annual Meeting of the Association for Computational Linguistics

3 APSEC Asia-Pacific Software Engineering Conference

4 ASE IEEE/ACM International Conference on Automated Software Engineering

5 COMPSAC IEEE Annual Computers, Software, and Applications Conference

6 EASE Evaluation and Assessment in Software Engineering

7 ESEC/FSE
ACM Joint European Software Engineering Conference

and Symposium on the Foundations of Software Engineering

8 ICDM IEEE International Conference on Data Mining

9 ICLR International Conference on Learning Representations

10 ICMLA International Conference on Machine Learning and Applications

11 ICML International Conference on Machine Learning

12 ICPC International Conference on Program Comprehension

13 ICSE IEEE/ACM International Conference on Software Engineering

14 ICSME IEEE International Conference on Software Maintenance and Evolution

15 ICSR International Conference on Social Robotics

16 ICST IEEE International Conference on Software Testing, Verification and Validation

17 ICTAI IEEE International Conference on Tools with Artificial Intelligence

18 IJCAI International Joint Conference on Artificial Intelligence

19 IJCNN International Joint Conference on Neural Networks

20 Internetware Asia-Pacific Symposium on Internetware

21 ISSRE IEEE International Symposium on Software Reliability Engineering

22 ISSTA ACM SIGSOFT International Symposium on Software Testing and Analysis

23 IWoR International Workshop on Refactoring

24 IWSC International Workshop on Software Clones

25 MSR International Conference on Mining Software Repositories

26 NeurIPS Annual Conference on Neural Information Processing Systems

27 NIPS Advances in Neural Information Processing Systems

28 OOPSLA Object-Oriented Programming, Systems, Languages, and Applications

29 QRS International Conference on Software Quality, Reliability and Security

30 RE International Conference on Requirements Engineering

31 SANER International Conference on Software Analysis, Evolution and Reengineering

32 SEKE International Conference on Software Engineering and Knowledge Engineering

33 S&P IEEE Symposium on Security and Privacy

34 WCRE Working Conference on Reverse Engineering

35 WWW Web Conference

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 5

Table 3 Journals Covered by the Survey

#ID Abbreviation Journal

1 ASE Automated Software Engineering

2 COLA Journal of Computer Languages

3 CSUR ACM Computing Surveys

4 ESE Empirical Software Engineering

5 FCS Frontiers in Computer Science

6 IETS IET Software

7 IST Information and Software Technology

8 JSS Journal of Systems and Software

9 NCA Neural Computing and Applications

10 PACMPL ACM on Programming Languages

11 RE Requirements Engineering

12 SCIS Science China Information Sciences

13 TC IEEE Transactions on Computers

14 TOSEM ACM Transactions on Software Engineering and Methodology

15 TSE IEEE Transactions on Software Engineering

16 TSUSC IEEE Transactions on Sustainable Computing

17 – Soft Computing

18 – IEEE Transactions on Reliability

19 – IEEE Access

20 – Expert Systems with Applications

21 – Journal of Software: Evolution and Process

22 – Advances in Engineering Software

are quite many researchers interested in deep learning-based software engineering, the number of papers
increases quickly. Consequently, the number of papers discussed in this survey has already significantly
surpassed the number of surveyed papers in recent systematic literature reviews (i.e., Yang et al. [10]
and Watson et al. [24]). Further, this survey notably belongs to the theme of AI4SE (where various
techniques of artificial intelligence are applied to software engineering), whereas there is also intensive
research in another related theme of SE4AI (where techniques for software engineering are applied to
enhance artificial intelligence systems). An important goal of our subjective judgment is to avoid the
inclusion of SE4AI papers in our paper collection.

2 Related Work

Recently, Yang et al. [10] performed a systematic literature review to summarize, classify, and analyze rel-
evant papers in the field of software engineering that leverage deep learning techniques. They collected in
total 250 relevant papers published in 32 major software engineering conferences and journals since 2006.
Based on the papers, they analyzed the development trends of deep learning, provided a classification of
deep learning models, and summarized the research topics tackled by these relevant papers. The major
task of the systematic literature review is to figure out which and how deep learning techniques have been
applied to software engineering. Their findings suggest that four categories of DNNs (CNN, LSTM, RNN,
and FNN) were frequently employed by more than 20 studies. In addition, they summarized three types
of DNN-based model selection strategies, i.e., characteristic-based selection, prior study-based selection
based on, and using multiple feasible DNNs where the first strategy (characteristic-based selection) is by
far the most popular one. Our survey differs from the systematic literature review by Yang et al. [10] in
that Yang et al. focus more on deep learning techniques whereas we focus more on software engineering
tasks. Yang et al. explain what deep learning techniques have been applied to software engineering
whereas we analyze each software engineering task to explain how deep learning techniques could provide
help for the task, and what kind of challenges could be encountered. In total, we analyze more than 500
papers that leverage deep learning techniques for software engineering, providing a more comprehensive

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 6

view on this emerging research field.

Watson et al. [24] conducted another systematic literature review on the application of deep learning
techniques in software engineering. They collected and analyzed 128 papers from software engineering and
deep learning conferences and journals. The major task of the paper is to answer five questions, i.e., what
types of software engineering tasks have been addressed by deep learning techniques, what deep learning
techniques have been applied to software engineering, how requested training data are collected, how well
software engineering tasks have been addressed by deep learning techniques, and what common factors
influence the replicability of deep learning applied to software engineering tasks. Their findings suggest
that deep learning-based techniques had been applied in a diverse set of tasks where program synthesis,
code comprehension, and source code generation are the most prevalent. They also found that a number
of different data preprocessing techniques have been utilized. Tokenization and neural embeddings are
the two most frequently employed data pre-processing techniques. Besides that, their analysis revealed
seven major types of deep learning architectures that have been employed for software engineering tasks,
including Recurrent Neural Networks (RNNs), Encoder-Decoder Models, Convolutional Neural Networks
(CNNs), Feed-Forward Neural Networks (FNNs), AutoEncoders, Siamese Neural Networks, and highly
tailored architectures. Our survey differs from Watson et al. [24] in that Watson et al. take software
engineering as a whole to discuss the advances and challenges in applying deep learning techniques to
software engineering. In contrast, we discuss the advances and challenges for each software engineering
task concerning how deep learning techniques could be employed to resolve the given software engineering
task.

The survey conducted by Niu et al. [25] reviews pre-trained models used in software engineering. In
total, they identified and analyzed 20 pre-trained models developed for software engineering tasks. They
classified the models with four dimensions, i.e., the underlying network architecture, the number of input
modalities, the tasks used for pretraining, and whether they are pre-trained on a single programming
languages or multiple programming languages. It also investigated how the models were pretrained for
different software engineering tasks. Their goal is to raise the awareness of AI technologies, including the
development and use of pre-trained models and the successful applications of such models in resolving
software engineering tasks. Their findings suggest that code pre-training models are a promising approach
to a wide variety of software engineering tasks. Our survey differs from the survey conducted by Niu et
al. [25] in that the survey by Niu et al. is confined to pre-trained models whereas our survey covers all
deep neural networks employed for software engineering tasks.

Zhang et al. [26] conducted a systematic survey to summarize the current state-of-the-art research in
the LLM-based SE community. They summarized 30 representative LLMs of source code across three
model architectures, 15 pre-training objectives across four categories, and 16 downstream tasks across
five categories. They presented a detailed summarization of the recent SE studies for which LLMs are
commonly utilized. Furthermore, they summarized existing attempts to empirically evaluate LLMs in
SE, such as benchmarks, empirical studies. Finally, they discussed several critical aspects of optimization
and applications of LLMs in SE. Our survey differs from the survey conducted by Zhang et al. [26] in
that our survey focus on all deep neural networks employed for software engineering tasks. However, the
survey conducted by Zhang et al. specifically concentrates on different representative LLMs.

As a conclusion, although a few surveys have been made concerning the synergy between software
engineering and deep learning, we still lack a clear picture of the advances, potentials, and challenges
concerning deep learning-driven attempts to various software engineering tasks. To this end, in this
paper, we select the most fundamental and most challenging software engineering tasks, and for each of
them we analyze the advances, potentials, and challenges of its deep learning-based solutions.

3 Requirements Engineering

Requirements engineering (RE) is the process of eliciting stakeholder needs and desires and developing
them into an agreed-upon set of detailed requirements that can serve as a basis for all subsequent de-
velopment activities. Unlike solution-oriented SE tasks (such as software design and program repair)
that aim to ensure “doing the thing right”, requirements engineering is a problem-oriented SE task
that aims to ensure “doing the right thing”, i.e., to make the problem that is being stated clear and
complete, and to guarantee that the solution is correct, reasonable, and effective [27].

Recently, more and more RE researchers employ deep learning techniques to elicit, analyze, trace,

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 7

validate, and manage software requirements. In this section, we will introduce the progress of DL-related
RE literature from three perspectives, i.e., RE task taxonomy, datasets, and DL models. Then, we will
summarize the challenges and opportunities faced by DL-related RE literature.

3.1 Requirements Elicitation

The task of requirements elicitation aims to gather accurate and complete information about what the
system should do, how it should behave, and what constraints and limitations it should adhere to.
This process is critical in software development because the success of a project depends on clearly
understanding requirements and translating them into solutions that meet stakeholder needs.

Huang et al. [28] proposed a convolution neural network (CNN)-based approach for automatically
classifying sentences into different categories of intentions: feature request, aspect evaluating, problem
discovery, solution proposal, information seeking, and information giving, and meaningless. They sped
up the training process by integrating batch normalization. They also optimized the hyper-parameters
through an automatic hyper-parameter tuning method in order to improve accuracy. Pudlitz et al. [29]
presented an automated approach for extracting system states from natural language requirements using
a self-trained Named-entity Recognition model with Bidirectional LSTMs and CNNs. They presented
a semi-automated technique to extract system state candidates from natural language requirements for
the automotive domain. The results show that their automated approach achieves a F1-score of 0.51,
with only 15 minutes of manual work, while the iterative approach achieves an F1-score of 0.62 with
100 minutes. Furthermore, manual extraction took nine hours, demonstrating that machine learning
approaches can be applied with a reasonable amount of efforts to identify system states for requirements
analysis and verification.

Li et al. [30] proposed a technique called DEMAR based on deep multi-task learning, which can discover
requirements from problem reports, and solve the limitations that requirements analysis tasks usually
rely on manually coded rules or insufficient training data. Through the three steps of data augmentation,
model building, and model training, their experimental results show that the multi-task learning mode of
DEMAR has higher performance than the single-task mode. Meanwhile, DEMAR also outperforms the
other selected existing techniques. DEMAR provides directions for exploring the application of multi-
task learning to other software engineering problems. Guo et al. [31] proposed Caspar, a technique for
extracting and synthesizing app question stories from app reviews. Caspar first extracts ordered events
from acquired app reviews and ranks them using NLP techniques. Caspar then classifies these events
into user actions or application questions, and synthesizes action-question pairs. Finally, an inference
model is trained on the operation-problem pairs. For a given user action, Caspar can infer possible
program problem events, thus enabling developers to understand possible problems in advance to improve
program quality. They experimented with SVM, USE+SVM, and Bi-LSTM networks, respectively; and
the results show that the Bi-LSTM model performs better than the other two. Mekala et al. [32] proposed
a deep learning-supported artificial intelligence pipeline that can analyze and classify user feedback.
This technique includes a sequence classifier. Their experimental results show that the BERT-based
classifier performs the best overall and achieves good performance. Their experimental results further
demonstrate that pre-trained embeddings of large corpora are a very effective way to achieve state-of-the-
art accuracy in the context of low-capacity datasets. Tizard et al. [33] proposed a technique for linking
forum posts, issue trackers, and product documentation to generate corresponding requirements. They
scraped product forum data for VLC and Firefox, performed similarity calculations using the Universal
Sentence Encoder (USE), and matched forum posts to issue trackers. Furthermore, they demonstrated
that applying clustering to USE results in impressive performance on matching forum posts with product
documents. Shi et al. [34] proposed a technique called FRMiner to detect feature requests with high
accuracy from a large number of chat messages via deep Siamese networks. In particular, they used
Spacy to perform word segmentation, lemmatization, and lowercase processing on sentences, randomly
selected 400 conversations in three open-source projects for data sampling, and annotated them with the
help of an inspection team. Then, they built a context-aware dialogue model using a bidirectional LSTM
structure, and used a Siamese network to learn the similarity between dialogue pairs. Experimental
results show that FRMiner significantly outperforms two-sentence classifiers and four traditional text
classification techniques. The results confirm that FRMiner can effectively detect hidden feature requests
in chat messages, thus helping obtain comprehensive requirements from a large amount of user data in
an automated manner.

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 8

Pan et al. [35] introduced an automated developer chat information mining technique called F2CHAT,
which aims to solve the challenge of retrieving information from online chat rooms. They constructed
a thread-level taxonomy of nine categories by identifying different types of messages in developer chats.
Furthermore, they proposed an automatic classification technique F2CHAT, which combines hand-crafted
non-textual features with deep textual features extracted by neural models. The results show that
F2CHAT outperforms FRMiner and achieves high performance in cross-project verification, indicating
that F2CHAT can be generalized across various projects.

3.2 Requirements Generation

The task of requirements generation aims to recommend requirements drafts on top of very limited
information (e.g., keywords or structured models).

Most existing studies on automated requirements generation concentrate on transforming (semi-) struc-
tured models (e.g., business process models [36,37], i* framework [38,39], KAOS and Objectiver [40–42],
UML models [43–45], or other representations like security goals in [46]) into specific syntactic pattern-
oriented natural language requirements specifications, based on a set of pre-defined rules. Recently, Zhao
et al. [47] proposed an approach called ReqGen that aims to recommend requirements drafts based on
a few given keywords. Specifically, they first selected keyword-oriented knowledge from the domain on-
tology and injected it into the basic Unified Pre-trained Language Model (UniLM). Next, they designed
a copy mechanism to ensure the occurrence of keywords in the generated statements. Finally, they
proposed a requirement-syntax-constrained decoding technique to minimize the semantic and syntax dis-
tance between candidate and reference specifications. They evaluated ReqGen on two public datasets
and demonstrated its superiority over six existing natural language generation approaches. Koscinski et
al. [48] investigated the usage of Relational Generative Adversarial Networks (RelGAN) in automatically
synthesizing security requirements specifications, and demonstrated promising results with a case study.

3.3 Requirements Analysis

The purpose of requirements analysis is to systematically identify, understand, and document the software
requirements for a given system or software project.

Li et al. [49] proposed a new technique named RENE, which uses the LSTM-CRF model for require-
ments entity extraction and introduces general knowledge to reduce the need for labeled data. This
technique can more efficiently extract requirements entities from textual requirements, thereby reducing
labor costs. They introduced the construction and training process of RENE, and evaluated RENE on an
industrial requirements dataset, showing good results. Furthermore, they explored the value of general-
purpose corpora and unlabeled data, and provided an effective practical approach that can inspire how
to further improve performance on specific tasks.

3.4 Smelly Requirements Detection

The task of smelly requirements detection is to identify the potential issues in software requirements that
might threaten the success of software projects.

Casillo et al. [50] proposed to utilize a pre-trained convolutional neural network (CNN) to identify
personal, and private disclosures from short texts to extract features from user stories. They constructed
a user-story privacy classifier by combining the extracted features with those obtained from a privacy
dictionary. Ezzini et al. [51] proposed an automated approach for handling anaphoric ambiguity in
requirements, addressing both ambiguity detection and anaphora interpretation. They developed six
alternative solutions based on the choices of (1) whether to use hand-crafted language features, word
embeddings or a combination thereof for classification, (2) whether pre-trained language models like
BERT are a viable replacement for the more traditional techniques, and (3) whether a mashup of existing
(and often generic) NLP tools would be adequate for specific RE tasks. Wang et al. [52, 53] proposed
a deep context-wise semantic technique to resolve entity co-reference in natural-language requirements,
which consists of two parts. One is a deep fine-tuned BERT context model for context representation, and
the other is a Word2Vec-based entity network for entity representation. Then they proposed to utilize
a multi-layer perceptron (MLP) to fuse two representations. The input of the network is a requirement
contextual text and related entities, and the output is a predicted label to infer whether the two entities
are co-referent. Ezzini et al. [54] proposed QAssist, a question-answer system that provides automated

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 9

assistance to stakeholders during the analysis of NL requirements. The system retrieves relevant text
passages from the analyzed requirements document as well as external domain knowledge sources and
highlights possible answers in each retrieved text passage. When domain knowledge resources are missing,
QAssist automatically constructs a domain knowledge resource by mining Wikipedia articles. QAssist
is designed to detect incompleteness and other quality issues in requirements without the tedious and
time-consuming manual process.

3.5 Requirements Classification

The purpose of requirements classification is to categorize and organize the collected requirements based
on certain criteria or characteristics. By classifying requirements, the goal is to improve the understand-
ing, management, and communication of requirements throughout the software development process.

Baker et al. [55] proposed to classify software requirements into five categories by using machine learn-
ing techniques: maintainability, operability, performance, security, and availability. They conducted
experimental evaluations on two widely used software requirements datasets for convolutional neural net-
work (CNN) and artificial neural network (ANN) evaluation. The results show that this technique is
effective, reaching high precision and recall. In addition, they explored potential applications of the tech-
nique in software engineering life cycle, including automating the process of analyzing NFRs, reducing
human errors and misunderstandings, and reducing potential requirements-related defects and errors in
software systems. Tobias et al. [56] proposed an automated requirements classification technique called
NoRBERT, which uses the transfer learning capabilities of BERT. They evaluated NoRBERT on different
tasks, including binary classification, multi-class classification, and classification in terms of quality. Their
experimental results show that NoRBERT performs well when dealing with natural language requirements
and can effectively improve the performance of automatic classification methods. Luo et al. [57] proposed
a new requirements classification technique named PRCBERT, which is based on BERT’s pre-trained
language model and applies flexible prompt templates to achieve accurate classification. They also con-
ducted experiments on a large-scale demand dataset to compare it with other techniques, showing that
the technique significantly improves accuracy and efficiency. Winkler et al. [58] proposed an automated
approach for classifying natural language requirements by their potential verification techniques. They
proposed to use a convolutional neural network for text classification, and trained it on a dataset created
by industry requirements specifications. They performed 10-fold cross-validation on a dataset containing
about 27,000 industrial requirements, achieving a high F1 score. AlDhafer et al. [59] used Bidirectional
Gated Recurrent Neural Networks (BiGRU) to classify requirements into binary labels (functional and
non-functional) and multiple labels (Operational, Performance, Security, Usability, etc).

3.6 Requirements Traceability

The task of requirements traceability is to build the associations between software requirements and
other artifacts, which may be different types of requirements, design artifacts, source code, test cases and
other artifacts. Compared to other tasks in RE, much more research uses DL techniques for requirements
traceability.

To the best of our knowledge, the first DL for requirements traceability research was from Guo et al. [60]
in 2017. They proposed the technique of TraceNN to build the links between software requirements and
design documents. In particular, they modeled the task of traceability construction as a classification
problem. They embedded the features of text sequences based on the Recurrent neural network (RNN)
and used the multi-layer perceptron (MLP) to conduct the classification task. They evaluated two types
of RNN models, namely long short-term memory (LSTM) and gated recurrent unit (GRU) on large-scale
industrial datasets, and showed GRU achieved better mean average precision (MAP). In contrst, RNNs
can only encode one side of contextual information, which will be weakened for long sequences [61]. With
the wide application of BERT since 2018, different variants such as BioBERT [62] and CodeBERT [63]
have been developed for various domains. Lin et al. proposed TraceBERT [64] to construct the trace
links between requirements and source code based on CodeBERT, and modeled the traceability as a
code search problem. They designed a three-fold procedure of pre-training, intermediate-training and
fine-tuning towards their tasks. Particularly, they first pre-trained CodeBERT on source code to build
TraceBERT. Then in the intermediate-training phase, they provided adequate labeled training examples
to train the model to address the code search problem with the expectation that the model can learn
general traceability knowledge. Finally, in the fine-tuning phase, they applied the model to the specific

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 10

Figure 1 The deep learning models involved in the related work

“issue (natural language)-commit (programming language) tracing” problem to improve the tracing effect.
They evaluated three commonly used BERT architectures (i.e., single, twin, and Siamese) on open-source
projects. Their experimental results showed that the single architecture achieves the best accuracy, while
the Siamese architecture achieves similar accuracy with faster training time. Tian et al. [65] proposed
a technique named DRAFT to build the traceability between new requirements and other requirements
in different abstraction levels, during the system evolution process. They performed a second-phase
pre-training on BERT based on the project-related corpus for the purpose of project-related knowledge
transformation. Then, they designed 11 heuristic features and embedded them with requirements text.
The performance of DRAFT has been evaluated with eight open-source projects. Lin et al. [66] explored
the performance of information retrieval and deep learning techniques on building trace links in 14
English-Chinese projects. The involved approaches include Vector Space Model (VSM), Latent Semantic
Indexing (LSI), Latent Dirichlet Allocation (LDA), and various models that combine mono- and cross-
lingual word embeddings with the Generative Vector Space Model (GVSM), and a deep-learning approach
based on a BERT language model. Theyed show that their TraceBERT performed best in large projects,
while IR-based GVSM worked best on small projects.

From the perspective of paper distribution over different RE tasks, the most four tasks using DL tech-
niques are requirements elicitation, requirements traceability, smelly requirements detection and require-
ments classification, with 9, 7, 5 and 5 papers, respectively. For the other tasks, including requirements
generation and analysis, the involved papers are few. We did not find any papers related to requirements
management and requirements validation.

3.7 DL Models

Figure 1 shows the DL models involved in our surveyed studies on requirements engineering. We can see
that there are over 10 different kinds of models utilized in these DL4RE studies. Among these models,
BERT is the most widely-used one, followed by CNN, and the number of papers related to other models
is far smaller than these two. This may be because BERT and CNN are relatively mature and universal
deep learning models, which can adapt to different RE scenarios and datasets with high performance and
reproducibility. It may also be due to the active and extensive research community of BERT, which can
provide rich reference materials and the latest developments, stimulating the interest and innovation of
researchers.

We can also see that the numbers of papers on the transformer-based model and NN-based model are 11
and 13 respectively, indicating that they have certain competition and complementarity in requirements
engineering, and have certain research value and practical significance. There is no absolute difference
between good and bad, but it is necessary to select or design appropriate in-depth learning models
according to the specific RE tasks.

Usage of DL models. Figure 2 illustrates the ways of using deep learning models in requirements
engineering. Primarily, there are three types: direct-training, pre-training, and fine-tuning. Among them,
43% of the studies directly build neural networks from training. The advantage of direct training is that
it can train a model from scratch according to the dataset of the target task, without being limited to the
pre-trained model, and can customize the network structure and parameters towards specific domains
and tasks. The disadvantage is that if the dataset of the target task is not large enough, direct training

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 11

Figure 2 The proportion of different usage of DL models

may lead to problems such as model non-convergence, overfitting, and low generalization ability, etc.
Considering that most of the studies use the way of direct training, it may indicate that this way is
relatively simple and effective. Another possible reason is the lack of suitable pre-trained models or
domain knowledge.

36% of studies use pre-trained DL models. The advantage is that it can use the model parameters
trained by large-scale datasets, saving time and computing resources, and improving computational
efficiency and accuracy. The disadvantage is that if the dataset of the pre-trained model and that of
the target task are not highly similar, the effect of the pre-trained model may not be satisfactory, because
different tasks need to extract different features.

21% of studies use fine-tuned DL models. The advantage of fine-tuning is that it can adjust part or all
of the parameters based on the pre-trained model according to the dataset of the target task, retaining
the ability of the pre-trained model to extract general features and increasing the ability of the model
to adapt to new task features. The disadvantage is that it needs to choose a suitable pre-trained model,
a suitable fine-tuning level and range, a suitable learning rate, and other hyperparameters. Otherwise,
it may affect the effect of fine-tuning. Pre-training and fine-tuning each account for approximately a
quarter, possibly because the use of pre-training and fine-tuning has certain limitations and complexity.
Pre-training needs to select appropriate pre-trained models and objective functions, and the matching
degree and difference between pre-training models and RE problems or data need to be considered.
Fine-tuning needs to select appropriate fine-tuning strategies and parameter settings, and consider the
similarities and differences between different RE tasks or datasets.

Performance of DL models. Most papers use three indicators to measure the performance of deep
learning models: precision, recall and F1. We find that the precision and recall of deep learning models
are often above 80%, and the F1 score is often above 75%. The performance of deep learning models
is related to many factors, such as the structure and parameters of the model, the training methods,
and the size and quality of the dataset. Researchers often collect as many data as possible when using
deep learning models to improve the expected performance of the models. However, it is not necessarily
true that the larger the dataset is, the better the model performance is. The size of the selected dataset
in [54] is only 387, but the average recall and precision of its model are over 90% and 84%. The dataset
size used in [55] is 914, with a precision between 82% and 94%, a recall between 76% and 97%, and an
F1-score between 82% and 92%. In [35], the size of the used dataset is 2959, the largest one among these
three work, but its F1-score is only 62.8%, smaller than the other two. We can see that there are many
factors that affect the performance of deep learning models, and the size of the dataset is just one of
them. Different factors also affect and constrain each other. We need to analyze and experiment based
on specific situations.

3.8 Datasets

Datasets are a very important part of deep learning, as they are the foundation for training deep learning
models. We focus on the selected datasets for the DL4RE studies and summarize the results into a
bubble chart, as shown in Figure 3. The x-axis indicates the RE tasks that the studies focused on, and
the y-axis shows the size of data entries used in training and testing the involved DL models. The size

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 12

Figure 3 The size distribution of the datasets involved in the DL4RE studies.

of the bubble indicates the number of publications. As shown in Figure 3, we can see that 61% of the
selected publications have a dataset size of less than 6,000, which may be due to the difficulty and cost
of data collection. In some fields, data may be difficult to obtain and require professional equipments,
personnel, or licenses.

We can also find that the datasets used in the tasks of requirements detection, requirement generation,
and requirement classification are relatively smaller, which may be due to the phenomenon of data-
hungriness in the RE community. As software requirements often embed the value that software products
aim to deliver to their users, the requirements documents are typically private and confidential. Thus,
it is difficult for DL4RE studies to obtain enough data for training effective DL models. Requirements
generation is a text generation problem that can be improved by utilizing pre-trained language models
without requiring a large amount of domain data. Besides, some techniques, such as data enhancement,
transfer learning, and miniaturization networks, can be leveraged to reduce corpus size. In the meanwhile,
requirements elicitation studies have larger datasets since it is a comprehensive task involving knowledge
in multiple fields and multiple information sources. Moreover, many studies leverage the data in the
open-source community, such as feature requests or live chats, to build their deep-learning models.

3.9 Challenges and Opportunities

3.9.1 Challenges

• Low transparency of public requirements. Unlike other software development activities,
the publicly accessible data for requirements typically are small in volume and lack details. For
proprietary software, since requirements reflect the delivered value of the software, organizations
usually consider requirements as confidential assets and are reluctant to open them. For open-
source software (OSS), their requirements are scattered in massive informal online discussions, such
as issue reports [34] or live community chats [30]. Although there are some widely-used requirements
benchmarks, such as PROMISE and MODIS, the scale cannot be compared to that of open-source
code in GitHub. Besides, many publicly accessible benchmarks depict requirements in textual and
entry-oriented formats, lacking details on project-level information, such as detailed background,
stakeholder preferences, and graphic presentations. Thus, it becomes difficult for RE researchers
to comprehensively understand the rationale behind the textual requirements, as well as efficiently
train DL models for RE.

• High diversity in representations. Software requirements are typically depicted in a variety of
formats, including textual formats, data-entry formats, user stories, use cases, as well as (semi-)
structured models. Notably, the representation within each format can also vary significantly. For
instance, when it comes to modeling requirements, representations might take the form of Uni-
fied Modeling Language (UML), Systems Modeling Language (SysML), Goal-oriented models, etc.

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 13

Although guideline standards like ISO/IEC/IEEE 29148:2018 [67] and Easy Approach to Require-
ments Syntax (EARS) [68] are provided, their adoption in the industry is limited. It is reported
that nearly half (47%) of RE practitioners are unaware of these standards [69]. Consequently, the
representation of requirements often aligns with individual writing practices rather than standard-
ized guidelines. This significant diversity in representations poses a considerable challenge for DL
models in accurately interpreting requirements. Additionally, it presents a notable obstacle in train-
ing DL models too, compounding the complexity of achieving reliable performance across varied
formats.

• Hidden domain-specific knowledge and experiences. Many requirements-related tasks (such
as specification, modeling, and analysis) hinge on domain-specific knowledge and the accumu-
lated experience of experts. For example, it is commonly accepted that high-quality requirements
must embody three key characteristics: Correctness, Consistency, and Completeness — collectively
known as the ‘3Cs’. Yet, these attributes are not clearly and formally defined in the industry, nor
are there universally recognized detailed metrics to evaluate whether a set of requirements meets
the 3C standard. Consequently, this aspect of the work often depends on the nuanced insights of
experienced engineers. Regrettably, requirements engineers typically do not document this critical
domain knowledge or their hands-on engineering experiences. This documentation is not typically
required by project management protocols. Moreover, the challenge of accurately capturing the ob-
jective essence of such experiential knowledge remains unresolved. This gap means that DL models
are currently difficult to absorb and apply such valuable expertise to support RE tasks.

3.9.2 Opportunities

• Needs for research on piecing scattered OSS requirements into a big picture. The
influence and momentum of OSS on other SE tasks, like code generation and repair, is substantial
and revolutionary. To advance AI4RE research, we appeal to construct evolving requirements for
OSS. As the above discussion, OSS requirements are scattered in massive informal online discussions.
Therefore, it is crucial to embark on research focused on pinpointing discrete pieces of requirements
information, assembling them into coherent and intelligible requirements documents, and ensuring
their evolution in tandem with changes in the code base.

• Exploring the feasibility and usability of AI-based RE approaches in real industrial
settings. While AI-based approaches have demonstrated efficacy in a multitude of tasks, their
effectiveness for RE-tasks in real-world industrial settings remains uncertain. Indeed, there was
even evidence that practicing engineers are reluctant to rely on AI models for higher-level design
goals [70]. This presents a significant opportunity to delve into and expand upon this uncharted
area of RE research.

• Leveraging the interaction capability of LLMs to enhance requirements activities. High-
quality requirements lay the foundation for robust software products. In essence, the success of
LLMs in various SE tasks is contingent upon the quality of these underlying software requirements.
Given the impressive interactive capabilities of LLMs, a promising avenue is to harness these models
to engage with diverse stakeholders intelligently. Through such interactions, LLMs can be leveraged
to efficiently carry out tasks like requirements discovery, negotiation, and validation, anchored by
rapid prototyping.

4 Code Generation

In practice, a highly efficient code generation model may significantly boost developers’ productivity,
enabling them to complete programming tasks by simply inputting target descriptions into code genera-
tors [71]. Therefore, automated code generation can be deemed as an important objective for developers,
highlighting the crucial role of the code generation task in the software engineering (SE) field. In addition,
code completion is one of the most widely used code generation tasks in integrated development environ-
ments (IDEs) [72]. According to the study on the Eclipse IDE by Murphy et al. [73], code completion
is one of the top ten commands used by developers. Recent years have seen increasing interest in code
completion systems using deep learning techniques [74,75].

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 14

To achieve this goal, within the academic community, a range of studies [76] have put forth deep
learning (DL)-based models for automatically generating code fragments from input utterances. To gain
a deeper understanding of these advanced techniques, in this section, we survey different studies on DL-
based code generation. In particular, we survey the following three types of research: 1) research on
proposing new techniques, 2) research on empirical evaluations, and 3) research on constructing datasets.
Due to the specific characteristics of code, it is necessary to invent specialized deep learning techniques
to deal with code. Therefore, we can see a number of influential deep learning techniques for code stem
from the area of code generation. Table 4 highlights the main technical contributions in code generation.
Since code completion is one of the most important code generation applications, we also survey deep
learning based code completion.

The primary contributions of the analyzed studies can be classified into nine distinct categories, high-
lighting the diverse range of advancements and innovations within code generation.

4.1 Enhancing Code Structure Information

Six studies highlight the oversight of rich structural information in many code generators [77]. To address
this concern, diverse approaches have been proposed for incorporating additional code structure infor-
mation into their DL-based models, aiming to enhance the overall performance. Rabinovich et al. [78]
introduced abstract syntax networks, a DL-based model that incorporates supplementary structural in-
formation from abstract syntax trees (ASTs). Their model utilizes an encoder-decoder BiLSTM with
hierarchical attention, aiming to generate well-formed and executable Python code fragments. Jiang et
al. [79] observed that the standard Seq2Tree model translates the input natural language description into
a sequence based on the pre-order traversal of an Abstract Syntax Tree (AST). However, this traversal
order might not be optimal for handling multi-branch nodes in certain cases. To address this, they put
forward the idea of enhancing the Seq2Tree model with a context-based Branch Selector, enabling it to
dynamically determine the optimal expansion orders for multi-branch nodes.

4.2 Special Code Generation

Four studies employ DL techniques to generate code fragments for less common programming languages
or in unusual logical forms. Yu et al. [84] introduced a novel DL model specifically designed for generating
SQL code for test code scenarios. Yang et al. [86] introduced a pre-trained model to generate assembly
code from NL descriptions.

4.3 Multi-mode based Code Generation

The studies in this category construct the code generators by taking into account multiple code artifacts
in a comprehensive manner. Le et al. [90] noticed that most code generators overlook certain crucial yet
potentially valuable code specifications, such as unit tests, which frequently leads to subpar performance
when addressing intricate or unfamiliar coding tasks. They thus introduced a new generation procedure
with a critical sampling strategy that allows a model to automatically regenerate programs based on
feedback from example unit tests and NL descriptions. Wang et al. [91] integrated NL descriptions with
the specific attributes of programming languages, such as token types, to construct CodeT5, which is a
unified pre-trained encoder-decoder Transformer model designed for generating code fragments.

4.4 Compilability

Three studies concentrate on the development of DL-based code generators with the objective of gen-
erating executable code fragments across multiple programming languages. Sun et al. [92] identified a
significant number of inaccuracies and non-executable SQL code generated as a result of the mismatch
between question words and table contents. To mitigate this problem, they took into account the table
structure and the SQL language syntax to train a DL-based SQL generator. Wang et al. and Poesia et
al. [93,94] leveraged the powerful capability of large language models (LLMs) to improve the compilability
of generated code.

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 15

Table 4 Characteristics of studies within the Design Research category.

Contribution Model Type Programming Language (PL) Reference

Enhanced Code Structural Info DL Python [78]

DL Java [80]

DL Java, Python [81]

DL Python, SQL [82]

Pre-trained Python [79]

Special Code Generation DL Conditional Statement [83]

DL SQL (Test Code) [84]

DL Pseudo-code [85]

Pre-trained Assembly, Python [86]

Multi-mode based DL Java, Python [87,88]

Pre-trained Python [89,90]

Pre-trained Go, Java, JavaScript, PHP, Python, Ruby [91]

Compilability DL SQL [92]

Pre-trained Python [93]

Pre-trained SQL, Vega-Lite, SMCalFlow [94]

Dual Learning based DL Java, Python [95]

Pre-trained Java [96]

Pre-trained Python, SQL [97]

Search-based DL Python [98]

DL C++ [99]

Pre-trained Java, Python [100]

Context-aware DL Java [101,102]

Pre-trained Python [103]

Practicality DL python, SQL [104]

DL Javascript [105]

Long Dependency Problem DL Python [77,106,107]Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 16

4.5 Dual-Learning based Code Generation

Three studies capitalize on the dual connections between code generation (CG) and code summarization
(CS) to generate accurate code fragments from NL descriptions. Wei et al. [95] exploited the duality
between code generation and code summarization tasks to propose a DL-based dual training framework to
train the two tasks simultaneously. Ahmad et al. and Ye et al. [96,97] leveraged the inherent relationship
between CG and CS and utilized pre-trained models to enhance the accuracy of the code generation task.

4.6 Code Generation on Top of Existing Code

Several studies have observed that generating code based on existing related code fragments can yield
superior performance compared to generating code from scratch. As a result, these studies incorporate
code search techniques and leverage DL to construct their code generators. For instance, Hashimoto et
al. and Kulal et al. [98, 99] employed DL-based retrieval models to generate Python and C++ code.
Additionally, Parvez et al. [100] utilized information retrieval techniques along with pre-trained models
to develop a code generator capable of generating code in multiple programming languages, such as Java
and Python.

4.7 Context-aware Code Generation

Recognizing that the code fragments generated by many existing code generators may not be directly
applicable in software, several studies have proposed to incorporate code contexts to enhance the accuracy
of code generation. Guo et al. [102] introduced a context-aware encoder-decoder model with a latent
variable in their code generator, enabling it to incorporate the contextual environment during code
generation. Li et al. [103] proposed SKCODER, an approach for sketch-based code generation, aiming
to simulate developers’ code reuse behavior. SKCODER retrieves a similar code snippet based on an
NL requirement, extracts relevant parts as a code sketch, and then modifies the sketch to generate the
desired code.

4.8 Practicality

Two relevant studies aim to improve the practicality of code generators. Dong et al. [104] introduced
a structure-aware neural architecture for code generation that exhibits adaptability to diverse domains
and representations. Shen et al. [105] proposed a task augmentation technique that integrates domain
knowledge into code generation models, making their model the first domain-specific code generation
system adopted in industrial development environments.

4.9 Long Dependency

Many deep learning-based code generators are trained using recurrent neural networks (RNNs) such as
LSTM [108], BiLSTM [109], and GRU [110]. To overcome the long-term dependency problem, three
studies introduce novel techniques to tackle this challenge. Sun et al. [77] proposed a novel tree-based
neural architecture and applied the attention mechanism of Transformers to alleviate the long-dependency
problem. Xie et al. [107] utilized mutual distillation learning to train a code generator in order to avoid
the occurrence of this problem.

4.10 Code Completion

Table 5 shows code completion techniques published in the premier publication venues (i.e., ASE, ICSE,
and FSE) from 2020 to 2023. Since 2020, there have been six papers focusing on the code completion task,
in which three of them exploit the pre-trained models or large language models. GPT-2 is widely used
in completing source code. Among all programming languages, Java and Python are the most popular
programming languages. Wang et al. [111] conducted an empirical study that investigated developers’
perspectives on code completion. Liu et al. [112] and Izadi et al. [113] integrated the multi-task learning
techniques by learning different types of information of the source code (e.g., token sequences and ASTs).
Tang et al. [114] introduced the retrieval-augmented language model to conduct domain adaption and
improve the performance of existing LLMs (e.g., ChatGPT and UniXcoder) on the code completion task.
Their results show that retrieval techniques can be seamlessly integrated with black-box code completion
models and as a plugin to further enhance the performance of LLMs.

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 17

Table 5 Deep Learning based Code Completion Studies

Year Venue Literature Language Model

2020 ASE [112] Java, TypeScript Multi-task learning, Pre-trained models

2022 ICSE [113] Python Multi-task learning, GPT-2

2023 ASE [114] Java, Python Retrieval-augmented language model

2023 FSE [115] Java, Python GPT-2, CodeT5

2023 FSE [111] - Empirical Study

2023 ICSE [116] Java Transformer

4.11 Empirical Studies

Four studies [117–120] undertake empirical investigations to examine the characteristics of existing code
generators. Dahal et al. [117] leveraged text-to-tree, linearized tree-to-tree, and structured tree-to-tree
code generation models to perform an empirical analysis of the significance of input forms for code
generation. They found that using a structure-aware model improves the performance of models on
both two datasets. Norouzi et al. [118] examined whether a generic transformer-based Seq2Seq model
can achieve competitive performance with the minimal design of code-generation-specific inductive bias.
They observed that it is possible for a transformer-based Seq2Seq model with minimal specific prior
knowledge to achieve results that are superior to or on par with state-of-the-art models specifically
tailored for code generation. Mastropaolo et al. [119] presented an empirical study to investigate whether
different but semantically equivalent NL descriptions yield the same code fragments. The experimental
results demonstrate that modifying the description leads to generating different code in approximately
46% of cases. Furthermore, differences in semantically equivalent descriptions can have an impact on
the correctness of the generated code (±28%). Xu et al. [120] conducted a comprehensive user study
on code generation and retrieval within an integrated development environment (IDE), developing an
experimental harness and framework for analysis. They noticed that developers raise concerns about the
potential side effects of code generators on their workflow, encompassing aspects such as time efficiency,
code correctness, and code quality.

4.12 Datasets

There are four studies that construct available benchmark datasets for the code generation task. Table 6
provides detailed information about the studies within the dataset construction category. Specifically, Iyer
et al. [101] emphasized the significance of code contexts in the code generation task. To achieve accurate
code fragment generation based on corresponding code contents and natural language descriptions, they
developed CONCODE, a dataset including over 100,000 examples comprising Java classes sourced from
online code repositories. Liang et al. [121] introduced a novel code generation task: to generate a program
in a base imperative language with an embedded declarative language, given a natural language comment.
To support this task, they created a dataset (i.e., Lyra) consisting of 2,000 carefully annotated database
manipulation programs extracted from real-world projects. Each program is associated with both a
Chinese comment and an English comment. To accurately assess the performance of code generation,
Hendrycks et al. [122] introduced APPS, a benchmark specifically tailored for code generation in more
restricted settings compared with the prior benchmarks. Their benchmark comprises 10,000 problems,
spanning from simple online solutions to substantial algorithmic challenges. Lu et al. [123] developed a
comprehensive dataset known as CodeXGLUE. This dataset covers a diverse set of 10 tasks across 14
different datasets, encompassing eight programming languages, and it serves as a platform for evaluating
and comparing models in the field of code generation.

4.13 Challenges and Opportunities

In this section, we highlight some challenges and opportunities for future research in deep learning
techniques for code generation:

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 18

Table 6 The detailed information of studies within the Dataset Construction category.

PL Dataset Name Reference

Java CONCODE [101]

Python Lyra [121]

Python APPS [122]

Python, Java, PHP, JavaScript, Ruby, Go, C/C++ CodeXGLUE [123]

4.13.1 Challenges

• Unsafe Code Generation. Deep learning techniques, especially recently proposed large language
models (LLMs), are (pre-)trained on massive code bases and then applied to code generation. The
code bases may include vulnerable code snippets that lead to generation of unsafe code. Thus, how
to generate functionally correct and safe code is challenging.

• Benchmarks. Existing benchmarks for code generation mainly include hand-written programming
problems and their corresponding solutions (such as HumanEval). However, there is a huge differ-
ence between these human-written benchmarks and real projects. In addition, the human-written
benchmarks are time-consuming and strongly dependent on experts’ knowledge. Thus, constructing
a benchmark from real projects automatically is important for code generation.

• Hallucination of LLMs. Recently, many LLMs have been exploited for code generation, such
as Copilot. Existing studies have shown that LLMs, such as ChatGPT, often generate fabricated
or inaccurate responses, which are commonly referred to as the hallucination phenomena [124].
Hallucination makes LLMs not always reliable in generating code snippets. It is crucial to combine
the capabilities of ChatGPT with human expertise to ensure the quality and reliability of the
generated code.

4.13.2 Opportunities

• Knowledge-Augmented Code Generation. Existing studies have shown that recently pro-
posed LLMs can generate code effectively. To better adapt LLMs to generate code for a specific
domain, knowledge-augmented code generation is helpful. It thus is important to integrate different
information, such as project information and similar code snippets, to boost existing LLMs.

• Managing datasets as software. Datasets (including the training data and benchmarks) are
important in training and evaluating a code generation model. As more and more datasets have
been proposed in recent years, we need to better manage the datasets for code generation models.
Nowadays, the datasets are also evolved and hosted in collaborating platforms, such as GitHub and
Hugging Face. Similar to software, we should improve dataset productivity, quality, and security.

5 Code Search

Code search is the process of finding relevant code snippets from online or local code repositories based
on query statements, typically expressed in natural language or code itself.

5.1 Natural Language based Code Search

5.1.1 Information Retrieval

Early code search engines primarily relied on Information Retrieval (IR) techniques to match query key-
words with code snippets. These techniques assess the relevance of queries and code based on their
textual similarity [125–128]. Subsequent approaches enhance code search by delving into the structural
aspects of source code. They consider diverse relationships between code entities and sought matches
between relevant APIs. A notable trend is the representation of code as directed graphs, effectively trans-
forming the search task into a graph exploration problem. For instance, McMillan et al. [129] introduced
Portfolio, a tool that pinpoints potential methods containing query keywords within an API call graph.
The tool then ranks the results using a combination of PageRank scores to evaluate node importance and

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 19

Spreading Activation Network (SAN) scores to gauge query relevance. In a similar vein, Li et al. [130]
presented RACS, a technique founded on relations. It parses natural language queries into action graphs
and code into relation invocation graphs. This enables a structural alignment between the two graph
representations, thereby elevating the accuracy of matches. However, these approaches encounter limita-
tions stemming from the pronounced disparities between programming languages and natural languages.
Consequently, the comprehension of semantics remains challenging for IR-based approaches.

5.1.2 Deep Learning

To establish more robust semantic connections between natural language queries and code, researchers
have increasingly turned to deep learning models to tackle code search tasks. The fundamental approach
involves encoding both the query statement and code into separate vector representations, then assessing
the semantic correlation between the two through vector similarity analysis. Gu et al. [19] innovatively
employed perceptrons and Recurrent Neural Networks (RNNs) to embed various code elements such as
method names, API call sequences, and code sequences into a shared high-dimensional space. This lays
the foundation for DeepCS, a code search tool. Sachdev et al. [131] introduced NCS (Neural Code Search),
tailored for extensive code repositories. NCS combines word embeddings with TF-IDF to generate vector
representations for code snippets and query statements. It then gauges relevance through vector distances,
simulating the significance of code snippets in relation to queries.

As deep learning progresses, subsequent research integrates more complex representations and more
sophisticated models for code vectorization. Ling and Zou [132] introduced a novel source code search
technique employing graph embedding. It involves creating a code graph from a software project’s source
code, representing code elements using graph embedding, and then utilizing this structure to answer nat-
ural language queries by returning relevant subgraphs composed of code elements and their relationships.
Gu et al. [133] proposed CRaDLe, a novel approach for code retrieval based on statement-level semantic
dependency learning. CRaDLe distills code representations by merging dependency and semantic in-
formation at the statement level, ultimately learning unified vector representations for code-description
pairs to model their matching relationship. Wan et al. [134] introduced MMAN, a Multi-Modal Attention
Network designed for semantic source code retrieval. They created a holistic multi-modal representation
by utilizing LSTM for sequential tokens, Tree-LSTM for code’s AST, and GGNN for its CFG, followed
by a multi-modal attention fusion layer that combines and assigns weights to different components for
an integrated hybrid representation. Ling et al. [135] introduced an end-to-end deep graph matching
and searching (DGMS) model for semantic code retrieval. They represented query texts and code snip-
pets as unified graph-structured data, and used the DGMS model to retrieve the most relevant code
snippet by capturing structural information through graph neural networks and fine-grained similarity
through cross-attention based semantic matching operations. Liu et al. [136] presented GraphSearchNet,
a neural network framework that improves source code search accuracy by simultaneously learning from
source code and natural language queries. They introduced bidirectional GGNN (BiGGNN) to create
graphs for code and queries, capturing local structural details, and enhanced BiGGNN using a multi-
head attention module to incorporate global dependencies for enhanced learning capacity. Li et al. [137]
introduced CodeRetriever, which obtains function-level code semantic representations via extensive code-
text contrastive pre-training. This involves unimodal contrastive learning that uses function names and
documentation to build code pairs, and bimodal contrastive learning that utilizes code comments and
documentation for code-text pairs, both contributing to effective pre-training using a vast code corpus.
Jiang et al. [138] introduced ROSF, a technique that enhances code snippet recommendations by com-
bining information retrieval and supervised learning. The approach involves two stages: generating a
candidate set using information retrieval and then re-ranking the candidates based on probability values
predicted by a trained model, resulting in improved code snippet recommendations for developers.

In recent years, significant progress has been made in the realm of large pre-trained models based on
the Transformer architecture, driving advancements across numerous NLP tasks. This progress leads to
the emergence of code understanding pre-training models leveraging transformers, fostering the growth
of code intelligence. For instance, Feng et al. [63] introduced CodeBERT, a pioneering large-scale pre-
trained model that integrates natural language and programming language understanding across multiple
programming languages. CodeBERT harnesses Masked Language Modeling (MLM) to capture the se-
mantic relationship between natural language and code. Researchers have explored the incorporation of
multiple modal representations of source code into the Transformer paradigm to gain a comprehensive

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 20

understanding. Guo et al. [139] developed the GraphCodeBERT model, seamlessly combining the vari-
able sequence from data flow graphs with the code token sequence. This model undergoes training via
MLM, Edge Prediction (EP), and Node Alignment (NA) tasks to encompass both code structures and
data dependencies. Similarly, Guo et al. [140] introduced UnixCoder, which fuses serialized Abstract
Syntax Trees (ASTs) with comment text sequences. By utilizing MLM, Unidirectional Language Model-
ing (ULM), DeNoiSing (DNS), Multi-modal Contrastive Learning (MCL), and Cross-Modal Generation
(CMG), this model enriches its comprehension of code syntax and semantics. Some researchers further
leveraged contrastive learning to enhance model performance. Shi et al. [141] introduced CrossCS, a tech-
nique that improves code search through cross-modal contrastive learning. They devised a novel objective
considering both inter- and intra-modality similarity, used data augmentation for semantic consistency,
and boosted pre-trained models by ranking code snippets with weighted similarity scores based on re-
trieval and classification scores. Bui et al. [142] presented Corder, a self-supervised contrastive learning
framework for source code models. It aims to reduce the need for labeled data in code retrieval and sum-
marization tasks by training the model to differentiate between similar and dissimilar code snippets using
contrastive learning and semantic-preserving transformations. Additionally, Shi et al. [143] introduced
CoCoSoDa, which employs contrastive learning for code search, incorporating soft data augmentation
and negative samples. They also applied multimodal contrastive learning to enhance code-query pair
representations.

5.1.3 Query Expansion and Refinement

Significant differences in expression and vocabulary between natural languages and code are key fac-
tors contributing to the mismatch between high-level intents implied in natural languages and low-level
code implementations [19], impacting the accuracy of code search. Improving the query statement or
the candidate code has been proved to be an essential approach for enhancing code search effectiveness.
Bajracharya et al. [144] introduced Sourcerer, an open-source code search engine that extracts detailed
structural information from code and stores it in a relational model. This information facilitates the
implementation of CodeRank and supports search forms beyond traditional keyword-based searches. Lu
et al. [145] introduced an approach that extends queries using synonyms from WordNet, which involves
extracting natural language phrases from source code identifiers, matching expanded queries with these
phrases, and sorting the search results. Fei et al. [146] introduced CodeHow, a code search technique
capable of recognizing potential APIs referenced in a user query. After identifying relevant APIs, Code-
How expands the query with these APIs and performed code retrieval using the extended boolean model,
incorporating both text similarity and potential APIs for improved search. Mohammad et al. [147] used
context-awareness and data analysis to apply appropriate term weighting in query reformulation, thereby
enhancing code search. Hill et al. [148] presented a search technique based on method signature analysis,
involving the rewriting of code method names and subsequent matching of the altered method names
with queries to facilitate the search process. Additionally, Liu et al. [149] introduced the NQE model,
which predicts keywords related to the query keywords in the corpus based on natural language queries.
This technique expands query statements and subsequently improves code search effectiveness. Alongside
utilizing identifiers in source code, researchers explores leveraging search logs from platforms like stack
overflow to enhance code search. Cao et al. [150] analyzed large-scale search logs from stack overflow to
identify patterns in query reformulation. They constructed a corpus encompassing both original queries
and their reconstructed versions, and then trained a model using this corpus. The trained model can
generate a list of candidate reconstructed queries when provided with a user query, offering improved
search options. Li et al. [151] introduced a generation-augmented query expansion framework that utilizes
code generation models to enhance code retrieval. Instead of relying solely on documentation queries,
the approach involves augmenting queries with generated code snippets from the code generation model,
drawing inspiration from the human retrieval process of sketching an answer before searching.

5.2 Code-to-Code Search

In addition to searching for code based on natural language input, code snippets are also utilized as
input for code search, divided into searching within the same programming language and across different
programming languages. A notable work for searching within the same language is Aroma proposed
by Luan et al. [152]. Aroma takes incomplete code snippets as input and searches for similar complete
code snippets from pre-indexed open-source projects. Compared to searching within the same language,

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 21

Table 7 Natural Language based Code Search Datasets

Dataset Language Size Source Release Year

StaQC [133] Python, SQL 267k SO 2018

CoNaLa [135] Python, Java 2.8k SO 2018

FB-Java [141] Java 287 SO, GitHub 2019

CodeSearchNet [142]

Python, Java,

Ruby, Go, PHP,

JavaScript

2M GitHub 2019

SO-DS [143] Python 2.2k SO, GitHub 2020

CosBench [151] Java 52 SO, GitHub 2020

CodeXGLUE [128] Python 281k Bing, GiHub 2020

CoSQA [157] Python 20k Bing, GitHub 2021

XCodeEval [158]

C#, C++, C, D,

Go, Haskell, Java,

Javascript, Kotlin,

Ocaml, Pascal, Perl,

PHP, Python, Ruby,

Rust, Scala

11k Codeforces 2023

cross-language code search is more challenging due to syntactic and semantic differences across languages.
Mathew et al. [153] introduced the COSAL approach, which performs non-dominated sorting based on
similarities between code snippets, including AST structures and input-output behaviors, to facilitate
code search within the same language and across languages. Additionally, cross-language search is used
for code translation, such as converting Java code into Python code with the same functionality. Perez et
al. [154] employed LSTM networks to model clone similarity between cross-language code snippets based
on ASTs, and Nguyen et al. [155] utilized the API2Vec model, inspired by Word2Vec, to embed APIs
into high-dimensional vectors for cross-language code translation. Chen et al. [156] introduced BigPT,
a technique for interactive cross-language retrieval from Big Code, involving a predictive transformation
model based on auto-encoders to aid program translation using retrieved code representations. Users are
able to further refine the retrieval results to improve the process.

5.3 Datasets

The following datasets in Table 7 are commonly used for natural language based code search.
The StaQC dataset [133] is tailored for predicting the suitability of code snippets in addressing specific

queries. Comprising (question, code) pairs, it was curated by filtering Python and SQL Stack Overflow
posts tagged with “how-to” questions, resulting in 147,546 Python pairs and 119,519 SQL pairs.

The CoNaLa dataset [135] consists of 2,379 training and 500 test examples, manually annotated with
natural language intents and corresponding Python snippets.

The FB-Java dataset [141] comprises 287 natural language queries and relevant code snippet answers
from Stack Overflow threads tagged with “java” or “android”. Additionally, it includes code snippet
examples from the search corpus, sourced from public repositories on GitHub, that correctly answer the
corresponding queries.

The CodeSearchNet corpus [142] is an extensive collection of approximately 6 million functions auto-
matically gathered from open-source code spanning six programming languages (Go, Java, JavaScript,
PHP, Python, and Ruby). It includes 2 million functions with query-like natural language descriptions
obtained via scraping and preprocessing associated function documentation. Furthermore, it contains
99 natural language queries with around 4,000 expert relevance annotations of likely results from the
CodeSearchNet Corpus.

The SO-DS corpus [143] consists of code snippets mined from Stack Overflow posts with the most
upvoted posts labeled with “python” and tags related to data science libraries such as “tensorflow,”
“matplotlib,” and “beautifulsoup.” The ground truth is collected by creating queries from duplicate
Stack Overflow posts, resulting in 2,225 annotated queries.

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 22

The CosBench corpus [151] comprises 475,783 Java files and 4,199,769 code snippets (Java methods)
extracted from the top-1000 popular Java projects on GitHub. It includes 52 queries with ground truth
code sbippets indicating three types of intentions: bug resolution, code reuse, and API learning, chosen
from Stack Overflow.

The CodeXGLUE [128] serves as a benchmark dataset and an open challenge for code intelligence,
encompassing various code intelligence tasks. For NL-based code search, it includes two sub-datasets:
AdvTest and WebQueryTest. AdvTest, constructed from the CodeSearchNet corpus [142], uses the first
paragraph of documentation as a query for the corresponding function. WebQueryTest is a testing set of
Python code questions answered with 1,046 query-code pairs and expert annotations.

The CoSQA dataset [157] is based on real user queries collected from Microsoft’s Bing search engine
logs. It encompasses 20,604 labels for pairs of natural language queries and code snippets, each annotated
by at least 3 human annotators.

The xCodeEval [158] is recognized as one of the most extensive executable multilingual multitask
benchmarks, encompassing seven code-related tasks that span across 17 programming languages. Derived
from a pool of 25 million openly available samples from codeforces.com, a platform hosting competitive
programming contests, this dataset comprises 7,514 distinct problems. In terms of code retrieval, xCodeE-
val introduces a novel and more demanding task, specifically centered on matching a natural language
problem description to the most relevant and accurate code within a candidate pool containing similar
solutions. To facilitate this, all submitted code snippets and their associated test cases are aggregated for
each programming language, creating a retrieval corpus and a suite of test cases. The primary objective
is to evaluate the correctness of these code snippets against the provided test cases. In this context, the
natural language problems serve as queries, and the correct solutions, verified by successful execution
outcomes (PASSED), are considered as the ground truth.

For code-to-code search, existing datasets designed for code clone detection, featuring clusters of se-
mantically equivalent implementations, can be utilized. One such dataset is the BigCloneBench provided
within CodeXGLUE [128]. In these datasets, a group typically comprises variations of the same imple-
mentation. In practice, one implementation within a group can serve as a query, while the remaining
implementations within the cluster act as the ground truth. Additionally, xCodeEval [158] offers a
dataset specifically tailored for code-to-code tasks. This dataset consists of 9,508 queries, created from
correct submitted solutions to the same natural language problems, adding diversity to the evaluation of
code-to-code search capabilities.

5.4 Challenges and Opportunities

5.4.1 Challenges

• Quality Assurance of Search Results. Ensuring the quality of code search results goes beyond merely
matching search intent. Factors such as correctness, security, and timeliness must be considered to
guarantee the reliability and suitability of the returned code snippets.

• Long Tail Issues. Addressing the challenges posed by less common, long-tail issues is essential. Code
search systems need to effectively handle diverse and infrequent queries, ensuring comprehensive
coverage across a spectrum of coding scenarios.

• Result Interpretability. Achieving interpretability in code search results is also a challenge. Only
little research effort (e.g., [159]) on this direction. It involves presenting search outcomes in a clear
and understandable manner, aiding developers in comprehending the context and relevance of the
returned code snippets.

• Integrating Retrieved Code into Development Context. Effectively utilizing code search results
poses a significant challenge. Typically, developers expend considerable effort in adapting and
integrating a retrieved code snippet into the current context of their code development.

• Ambiguity in Search Intents. The inherent ambiguity in certain search intents poses a challenge.
Code search systems need to navigate and interpret vague or imprecise queries to provide relevant
and accurate results.

• Dataset Quality Issues. Existing datasets used for training and evaluating code search models, such
as CodeSearchNet [142], often consider method comments as search queries, which fails to align

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 23

well with real-world code search scenarios [160]. While this can lead to strong model performance
during evaluation, it may not be effectively transferred into practical use.

• Efficiency vs. Effectiveness. Learning-based code search has shown promising search accuracy, but
it often demands substantial computing and storage resources. Although certain approaches [161,
162] have been proposed to address efficiency concerns in learning-based code search, there is still
significant room for improving the trade-off between efficiency and effectiveness.

5.4.2 Opportunities

• Incorporating Richer Input Information. Expanding the scope of input information beyond the
query itself presents an opportunity. Incorporating details from IDE development contexts, his-
torical patterns, and personal preferences can enhance the accuracy and relevance of code search
results.

• Enhanced Code Search with LLMs. Leveraging advancements in LLMs offers an opportunity to
augment code search capabilities. Focusing on result interpretability, code auto-adaptation, and
harnessing the advanced natural language and code semantic understanding abilities of LLMs can
elevate the efficiency of code search systems.

• Improved Intent Clarification Techniques. Advancing techniques for Intent clarification in code
search represents an opportunity. Developing techniques to better understand and refine user
search queries contributes to a more streamlined and effective code search experience.

• High-quality Dataset Construction. This presents an opportunity for the community to enhance
the quality of current datasets [160] or create more reliable ones for code search evaluation.

6 Code Summarization

Code summarization, also known as code comment generation, is a process that aims to enhance the
understanding and documentation of source code by automatically generating concise and informative
summaries for software artifacts [63,163–165]. It helps address the challenge of comprehending large and
complex code repositories by providing developers with high-level descriptions that capture the code’s
essential functionality and usage patterns.

Code summarization has been a hot research topic in software engineering in recent years. Initially,
researchers explore template-based methods like SWUM [166] and Stereotypes [167] for generating code
comments automatically; Meanwhile, information retrieval-based techniques such as VSM [168] and
LSI [169] are also applied for code summarization. However, with the rapid advancements in deep neural
networks within machine learning, deep learning-based approaches have gained momentum and become
predominant in code summarization research. Typically, researchers leverage deep learning models to
capture implicit relationships between relevant information within source code and natural language de-
scriptions. These approaches have significantly contributed to the development of code summarization,
facilitating more effective comprehension and documentation of software products.

Deep learning-based approaches for comment generation primarily mimic the Neural Machine Trans-
lation (NMT) [170] models in natural language processing. However, compared to translation tasks in
natural language, source code typically has a much greater length than comments and contains rich
structural information. Most deep learning-based research takes the source code token sequence as the
input to the model, while some studies also consider other information sources, such as Abstract Syntax
Trees (ASTs), API, and so on. We divide these studies into five categories based on different sources of
information: techniques that utilize source code sequences as the model input, techniques that employ
Abstract Syntax Tree (AST) sequences as the model input, techniques that use tree structures as the
model input, techniques that utilize graph structures as the model input, and techniques that consider
other sources of information. These techniques generate comments for code snippets (class level, function
level or line level), as well as comments for code commits (i.e., commit messages).

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 24

6.1 Using source code sequences as model input

A source code sequence refers to a simple stitching of a code snippet into a sequence with a token as a
basic unit. Using source code sequences as model input is simple and convenient and could preserve the
most original semantic information of the code.

Iyer et al. [17] proposed CODE-NN, the first deep learning model in code summarization, which
uses LSTM network structures and attention mechanisms to generate natural language descriptions of
C# code and SQL code. Allamanis et al. [171] applied convolutional neural networks (CNNs) with
attention mechanisms to an encoder that helps detect long-range topical attention features and local
time-invariant features of code sequences. Ahmad et al. [172] first used the Transformer model for source
code summarization, innovatively adding an attention layer to the encoder for replicating rare tokens of
the source code. Wang et al. [173] proposed Fret, which combines Transformer and BERT to bridge the
gap between source code and natural language descriptions and alleviate the problem of long dependencies.
Zhang et al. [174] tried to fuse two techniques: deep learning and information retrieval. Specifically, they
proposed Rencos, which first trains an encoder-decoder model based on a training corpus. Subsequently,
two code segments are selected from the training corpus according to the syntax and semantic similarity.
Finally, the input code segment and the retrieved two similar code segments are encoded and decoded
to generate comments. LeClair et al. [175] explored the orthogonality of different code summarization
techniques and proposed an integration model to exploit this for better overall performance. Gong et
al. [176] proposed SCRIPT, which first obtains the structural relative position matrix between tokens
by parsing the AST of the source code, and then encodes this matrix during the computation of the
self-attention score after the source code sequence is input into the encoder.

Some research considers both comment generation and code generation tasks. Chen et al. [177] focused
on both code retrieval and comment generation tasks, and they proposed a framework, BVAE, which
allows a bidirectional mapping between code and natural language descriptions. The approach attempts to
construct two VAEs (variational autoencoders), where C-VAE mainly models code and L-VAE primarily
models the natural language descriptions in comments. The technique jointly trains these two VAEs
to learn the semantic vectors of code and natural language representation. Similarly, Wei et al. [95]
considered code summarization and code generation as dyadic tasks, as there is a correlation between
the two tasks. They proposed a dual framework to train both tasks simultaneously. They exploited
the pairwise nature and the duality between probability and attention weights. Then they designed
corresponding regularization terms to constrain this duality. Clement et al. [89] focused on the Python
language and proposed PYMT-5. They also focused on dual tasks: code generation from signatures and
documentation generation from method code.

Some researchers focused on comment generation for commits. Jiang et al. [178, 179] used NMT to
generate concise summaries of commits while designing a filter to ensure that the model is trained only on
higher-quality commit messages. Jiang et al. [180] preprocessed code changes into more concise inputs,
explicitly using a code semantic analysis approach for the dataset, which can significantly improve the
performance of the NMT algorithm. Liu et al. [181] used a modified sequence-to-sequence model to
automatically generate PR descriptions based on submission information and source code comments
added in pull requests (PRs). Bansal et al. [182] proposed a project-level encoder to generate vector
representations of selected code snippets in software projects to improve existing code summarization
models. Xie et al. [183] considered method names as refined versions of code summaries. Their approach
first uses the prediction of method names as an auxiliary training task and then feeds the generated
and manually written method names into the encoder separately. Finally, the outputs are fused into the
decoder.

6.2 Using AST sequences as model input

An Abstract Syntax Tree (AST) is a hierarchical representation of the syntactic structure of a program
or code snippet. An AST represents the structure of the code by breaking it down into its constituent
parts and organizing them in a tree-like format. ASTs are commonly used in computer science and
programming language theory to analyze and manipulate code. Each node in an AST corresponds to a
syntactic element of the code, such as a statement, expression, or declaration.

Hu et al. [184] proposed Deepcom, a technique to preserve the structural information of the code
intact by parsing the source code into an AST. The authors designed a new traversal strategy, SBT

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 25

(Structure-based Traversal), which solves the problem that the source code cannot be effectively restored
from the AST sequence. Subsequently, they proposed Hybrid-DeepCom [185] based on DeepCom, which
mainly improves DeepCom in three aspects. First, it uses a combination of code information and AST
sequence information. Second, the OOV problem is mitigated by subdividing the identifier into multiple
words based on the camel naming convention. Finally, Hybrid-DeepCom uses beam search to generate
code comments. Huang et al. [186] proposed a statement-level AST traversal approach that preserves
both code text information and AST structure information, and achieves good results in code snippet-
oriented comment generation tasks. Tang et al. [187] proposed AST-Trans, which exploits two node
relationships in ASTs: ancestor-descendant and sibling relationships. The authors applied the attention
of a tree structure to assign weights to related nodes dynamically. Liu et al. [188] proposed ATOM,
which explicitly incorporates an AST of code changes and utilizes a hybrid sorting module to prioritize
the most accurately retrieved and generated messages based on a single code change.

Some approaches receive both AST and source code sequences as input. Wan et al. [189] combined
an LSTM that receives code sequences and an LSTM that receives ASTs to extract a hybrid vector
representation (named Hybrid-DRL) of the target code synthetically. It further uses a reinforcement
learning framework (i.e., actor-critic network) to obtain better performance. LeClair et al. [190] proposed
ast-attendgru, which also considers two representations of the code: a word-based text sequence and an
AST-based tree structure. It processes each data source as a separate input and later merges the vectors
produced by the attention layer. Xu et al. [191] proposed CoDiSum to extract AST structures and
code semantics from source code changes and then jointly model these two sources of information to
learn the representation of code changes better. Li et al. [192] designed a new semantic parser, SeCNN,
using two CNN components that receive source code and AST, respectively, and proposed a new AST
traversal technique ISBT to encode structural information more sufficiently. Specifically, they used the
serial number of the AST via pre-order traversal to replace the brackets in the SBT sequence. Gao
et al. [193] proposed M2TS, which uses cross-modal fusion further to combine AST features with the
missing semantic information and highlight the key features of each module. Zhou et al. [192] proposed
GSCS, which uses a graphical attention network to process AST sequences and a multi-head attention
mechanism to learn features of nodes in different representation subspaces.

6.3 Using tree structure as model input

Unlike the approaches discussed in the previous sub-section, which transforms the AST into a sequence,
approaches discussed in this sub-section retain the tree structure of the AST directly as input.

Liang et al. [193] proposed Code-RNN based on tree-LSTM, which is for the case where a node has
multiple children, thus overcoming the restriction of converting ASTs into binary trees. For decoding,
code-GRU is used. Wang et al. [194] built a tree structure based on code indentation, where the nodes of
the tree are statements in the code, and statements with the same indentation are sibling nodes. They
then fed this tree structure into a tree-transformer-based encoder. Lin et al. [195] partitioned the AST
into several subtrees according to the control flow graph of the method, and then fed the subtrees into
a tree LSTM for pre-training to obtain their vector representations. They used these representations in
the subsequent comment generation task. Similarly, Shi et al. [196] used user-defined rules to split the
AST tree hierarchically. The model learns the representation of each subtree using a tree-based neural
model, i.e., RvNN. The difference is that RvNN finally combines the representations of all subtrees by
reconstructing the split AST to capture the structural and semantic information of the whole tree.

6.4 Using graph structure as model input

A graph is a versatile and powerful data structure that captures complex relationships and intercon-
nections among entities. Some approaches treat the source tokens as graph vertices and represent the
relationships between tokens by edges.

Fernandes et al. [197] added graph information to sequence encoding. Source code is modeled as a graph
structure, which helps infer long-distance relationships in weakly structured data (e.g., text). LeClair
et al. [198] used a graph neural network (GNN) based encoder to model the graph form of an AST and
an RNN-based encoder to model the code sequences. Liu et al. [199] constructed a code property graph
(CPG) based on an AST while augmenting it with CPGs of ASTs of the retrieved similar code snippets.
Then, the CPGs are input into a graph neural network for training. Liu et al. [200] proposed a graph
convolutional neural network (GCN) based on a hierarchical attention mechanism for encoding graphs

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 26

Table 8 Datasets for code summarization

Dataset Literature Language Size

TL-CodeSum [205] Java 87,136

Deepcom [185] Java 588,108

Funcom [190] Java 2.1 million

CodeSearchNet [157] Go, Java, JavaScript, PHP, Python, and Ruby 2 million

code-docstring-corpus [214] Python 150,370

SCGen [215] Java 600,243

commitMessage [179] Java 2,027,734

parsed from code sequences. The code encoded by the sequence encoder is further combined with the
document text information for decoding. Cheng et al. [201] designed three encoders that receive source
code sequences, code structure information, and code context information. A bipartite graph is used
to represent the structure information evolved from the AST, with the addition of a keyword guidance
module.

Guo et al. [202] proposed CODESCRIBE, which models a code snippet’s hierarchical syntactic structure
(i.e., AST) by introducing new triadic positions. Then, they used a graph neural network and Transformer
to preserve the structural and semantic information of the code, respectively. Ma et al. [203] proposed
MMF3, which uses a graph convolutional network to encode AST graph embeddings while fusing the
sequence of source code features to determine the matching relationship between each token in the code
sequence and each leaf node in the AST by comparing the position order. Wang et al. [204] proposed
GypSum to introduce specific edges associated with the control flow of code snippets into the AST for
building graphs, and designed two encoders for learning from the graph and source code sequences.

6.5 Considering other sources of information

Other sources of information include APIs, control flow graphs, unified modeling languages, and byte-
code, etc. Hu et al. [205] argued that APIs called within code may provide certain information, and they
proposed TL-CodeSum, which first trains the mapping relationship between APIs and code comments
and subsequently migrates the learned knowledge to the code summarization task. Shahbazi et al. [206]
generated comments using API documentation, code snippets, and abstract syntax trees. They showed
that API documentation is an external knowledge source, and the performance improvement is negligible.
Gao et al. [207] proposed GT-SimNet, a code semantic modeling approach based on local application pro-
gramming interface (API) dependency graphs (local ADG). This approach is accomplished by computing
the correlation coefficients between dependency graphs and AST nodes.

Zhou et al. [208] proposed ContextCC to obtain ASTs by parsing code to find methods and their
associated dependencies (i.e., contextual information) and then generate code comments by combining
the filtered contextual information. Wang et al. [209] constructed a type-augmented abstract syntax
tree (Type-augmented AST) and extracted control flow graphs (CFGs) as an alternative syntax-level
representation of the code, with a hierarchical attention network to encode this data. Wang et al. [210]
introduced class names and associated Unified Modelling Languages (UMLs) for method comment gener-
ation, where the UMLs are fed into the graph neural network as graph forms. Son et al. [211] found that
Program Dependency Graphs (PDGs) can represent the structure of code snippets more effectively than
ASTs, proposed an enhancement module (PBM) that encodes PDGs as graph embeddings, and designed
a framework for implementing PBMs with existing models. Zhang et al. [212] proposed Re Trans to
enhance structural information by adding data flow and control flow edges to the AST and using GCN
to encode the entire AST.

Huang et al. [213] explored the feasibility of using bytecode as a source of information to generate code
comments. They used pre-order traversal to serialize the bytecode control flow graph, and combined it
with a bytecode token sequence as model input to achieve automatic code summarization in a scenario
without available source code.

6.6 Datasets

The following datasets in Table 8 are commonly used for automatic code summarization.

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 27

TL-CodeSum [205] comprises 69,708 method-comment pairs obtained by crawling Java projects devel-
oped between 2015 and 2016, each having a minimum of 20 stars on GitHub. The average lengths of
Java methods, API sequences, and comments are 99.94, 4.39, and 8.86, respectively.

Deepcom [185] is collected from GitHub’s Java repositories created from 2015 to 2016 considering only
those having more than 10 stars to filter out low quality repositories. It uses the first sentences of the
Javadoc as the target comments and excludes the setter, getter, constructor and test methods. After the
preprocessing, there are 588,108 method-comment pairs in total.

Funcom [190] constitutes a compilation of 2.1 million method-summary pairs derived from the Sourcerer
repository. After the removal of auto-generated code and exact duplicates, the dataset is partitioned into
training, validation, and test sets by project.

CodeSearchNet [157] is a large well-formatted dataset collected from open source libraries hosted on
GitHub. It contains 2 milllion code-summary pairs and about another 4 million functions without an
associated documentation, spanning six programming languages (i.e., Go, Java, JavaScript, PHP, Python,
and Ruby).

code-docstring-corpus [214] is a dataset downloaded from repositories on GitHub, retaining Python 2.7
code. The dataset contains 150,370 code-comment pairs. The vocabulary size of code and comment is
50,400 and 31,350, respectively.

SCGen [215] is a dataset of Java code snippets constructed from 959 Java projects of GitHub. Data
cleaning is performed to filter out invalid data according to templates, such as comments in setter and
getter methods or comments generated by the template predefined in the IDE comment plugin. Using a
comment scope detection approach, 600,243 code snippet-comment pairs are collected.

commitMessage [179] contains 967 commits from the exsiting work and all the commits from the top
1,000 popular Java projects in Github. The rollback commits, merge commits and the commits with
messages that are empty or have non-English letters are filtered. In the end, there are 2,027,734 commits
in the dataset.

6.7 Challenges and Opportunities

6.7.1 Challenges

• High-quality Dataset. The code summarization techniques based on deep learning need a high-
quality dataset to improve their performance. Although several datasets have been published in
this area, the data is selected from the perspective of the project popularity. As a result, there may
be duplicate data and machine-generated comments in the dataset. Developing practical techniques
to identify high-quality comments that really reflect the code intent is challenging.

• Evaluation Metrics. Many studies employ the BLEU metric to evaluate the performance of the code
summarization models. However, there are many variations of BLEU, which results in different ways
of calculation, such as BLEU-L and BLEU-C. On one hand, due to the different emphasis of each
variation of BLEU, the performance of the same model shows significant differences under different
BLEU metrics. On the other hand, it is possible that the BLEU score does not accurately reflect
the actual effect of the generated comment because the BLEU score is based on the repetition of
tokes in two sentences. Two sentences with the same semantics but different words have a low
BLEU score, which is unreasonable.

• Adaptation Ability : Code summarization needs to be adaptable to various programming languages,
each with its own syntax and semantics. Developing a universal summarization model that performs
well across diverse languages is a significant challenge.

6.7.2 Opportunities

At present, most code summarization models cannot be directly applied to the production practice, and
are still in the experimental prototype. It comes down to the fact that the model is not powerful enough
to apply. There is still a lot of room for improvement.

• Utilizing more implementation information: When the information at the source code level (e.g.,
ASTs, tokens, APIs, CFGs) is almost mined, a feasible way may be to mine more useful information
from outside the source code (e.g., bytecode, API documents, design documents) to characterize

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 28

the internal patterns of the code, and further improve the performance of code comment generation
models.

• Considering richer information in the comments: Most code summarization datasets take the first
sentences of comment or commit message as the code summary because the first sentences are
considered to describe the functionalities of Java methods according to Javadoc guidance. With
the development of deep learning models, other information in the summary (e.g., the intent or
rationale of the code) may be extracted and used for summary generation.

7 Software Refactoring

Software refactoring is to improve software quality by changing its internal structures whereas its external
behaviors are kept intact [216]. Ever since Opdyke proposed the concept of software refactoring in 1992,
researchers have tried to automate software refactorings aiming to reduce the cost of software refactoring
and to improve the safety of refactorings. Thanks to such hard work, automatic or semi-automatic
software refactoring has been provided as a default feature in all mainstream IDEs, such as Eclipse,
IntelliJ IDEA, and Visual Studio, thus significantly increasing the popularity of software refactorings.

Various techniques have been exploited for software refactorings [217–220] whereas recently deep learn-
ing techniques have become the main force in this field [221, 222]. Traditional software refactoring
heavily depends on static code analysis, code metrics, and expert-defined heuristics to identify code
smells [217, 218](i.e., what should be refactored) and to recommend refactoring opportunities. However,
it is challenging to formalize complex refactorings with human-defined simple heuristics, making tra-
ditional heuristics-based refactoring less accurate. In contrast, deep learning techniques with complex
networks and numerous weights, have the potential to learn complex refactorings [219]. Consequently,
various deep learning techniques have been recently employed for software refactoring.

However, applying deep learning techniques to software refactorings is nontrivial, encountering a se-
quence of challenges. The first challenge is to collect a large number of high-quality items requested for
training. Since deep models often contain a large number of parameters, they usually request a large
number of labeled items as training data. However, we lack such large-scale high-quality datasets in
the field of software refactoring. The second challenge is to figure out how deep models (deep learning
techniques) could be adapted for different categories of software refactorings. There are various deep
learning techniques (e.g., CNN, LSTM, and GNN), which are originally designed for tasks (e.g., natural
language processing or image processing) other than software refactoring. Consequently, such techniques
should be substantially adapted for this specific task.

7.1 Detection of Code Smells

Code smell detection is often taken as the first step in software refactoring because code smells often
indicate the problems of source code as well as their solutions (i.e., refactorings). Traditional approaches
usually distinguish software entities associated with code smells from smell-free code by code metrics,
taking the task of code smell detection as a binary classification problem. Since deep learning techniques
have proved effective in classification tasks [223, 224], it is reasonable to investigate deep learning-based
detection of code smells.

To the best of our knowledge, the automated approach to detecting feature-envy smells proposed by
Liu et al. [219] is the first attempt at deep learning-based code smell detection. They exploited traditional
code metrics, e.g., coupling between code entities, by a CNN, and exploited the identifiers of code entities
(i.e., names of the to-be-tested method and names of its enclosing class as well as its potential target class)
by another CNN. The outputs of the two CNNs are fed into a dense layer (Fully-Connected Network,
FCN) and its output generates how likely the method should be moved from its enclosing class to the
given target class. Their evaluation results suggest that trained with automatically generated data, the
deep learning-based approach is more accurate than traditional approaches that do not leverage deep
learning techniques. Based on the success, they [222] expanded the deep learning-based detection to
additional categories of code smells (i.e., long methods, large classes, and misplaced classes), and their
evaluation results suggest that deep learning techniques have the potential to improve the state of the
art in code smell detection.

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 29

Barbez et al. [225] applied CNN to capture the evolution of God classes. For a class to be tested,
the proposed approach (called CAME) extracts the latest n versions of this class, and for each version,
it extracts the selected code metrics (e.g., the complexity of the class). As a result, it expresses the
evolution of the class as a matrix Xn,m where n is the number of versions and m is the number of
involved code metrics. This matrix is fed into a CNN whose output is forwarded to a MLP (Multilayer
Perceptron). The MLP will make the final prediction, i.e., whether the class under test is a God class.
Notably, although this approach depends on deep neural networks, it leverages only 71 real-world God
classes for training and testing.

Yu et al. [226] employed a Graph Neural Network (GNN) to detect feature-envy smells. They rep-
resented methods as nodes in the graph and the calling relationships among methods as edges. They
leveraged a GNN technique to extract features and vectorize the nodes, and finally classified the nodes
(methods) as smelly methods or smell-free ones. Their evaluation results suggest that their GNN-based
approach is more accurate than the CNN and FCN-based approach proposed by Liu et al. [222] for
detecting feature-envy smells.

Zarina et al. [220] proposed a hybrid approach to identifying feature-envy smells by leveraging both
deep learning techniques and traditional machine learning techniques (i.e., SVM). The approach first
represents methods and classes as vectors with Code2Vec [227]. Code2Vec parses a method into an
AST, and represents each path between two AST leaves as a vector. Based on the resulting vectors
that represent patches within the AST, Code2Vec represents the whole method as a vector. A class is
presented as a vector that equals the average of the vectors of methods within this class. The vector
of the to-be-tested method and the vector of its potential target class are fed into SVM-based binary
classifier to predict whether the method should be moved to the given target class. Note that, the deep
learning model employed by this approach (i.e., Code2Vec) is unsupervised. Consequently, it does not
request a large number of labeled training data, which is a significant advance of the hybrid approach.
Similarly, Di et al. [228] also leveraged Code2Vec (or Code2Seq) to turn a method (i.e., AST) into a vector,
and employed graph embedding techniques to represent its dependency with other methods. With the
resulting embeddings, they also leveraged a traditional machine learning technique (Naive Bayes) to make
predictions.

Code smell detection, if taken as a binary classification, often encounters serious class imbalances
because software entities associated with code smells (noted as positive items) are often significantly fewer
than smell-free entities (noted as negative items). Fuzzy sampling, proposed by Yedida and Menzies [229],
is a novel technique to handle class imbalance. It adds points concentrically outwards from points (items)
of the less popular class. The oversampling thus may push the decision boundary away from these points
if the newly added points belong to the same class. As a result, the classifier trained with additional items
may learn better to identify similar items belonging to the less popular class. Yedida and Menzies [230]
validated whether this novel technique can boost deep learning-based code smell detection. Their results
demonstrate that fuzzy sampling boosts the deep learning-based approaches (proposed by Liu et al.
[222]) to detect feature envy, long methods, large class, and misplaced classes by fuzzy sampling. That is
to say, the results suggest that fuzzy sampling does improve the state of the art in deep learning-based
code smell detection.

7.2 Recommendation of Refactoring Opportunities

Although we may suggest where and which refactorings should be applied by automated detection of code
smells as introduced in the preceding section, we may also need to recommend refactoring opportunities
(and even detailed refactoring solutions) directly without code smell detection. For example, Liu et
al. [231] proposed an automated approach to recommending renaming opportunities based on renaming
refactorings that developers recently conducted. In this approach, they do not detect any specific code
smells but recommend refactorings similar to what has been conducted recently. The approach proposed
by Liang et al. [232] is similar to the approach by Liu et al. [231] in that both approaches recommend
renaming opportunities according to the evolution history of the source code. The key difference is that
Liang et al. [232] employed deep learning techniques whereas Liu et al. [231] depended on heuristics
and static source code analysis. Notably, Liang et al.’s approach recommends renaming opportunities
on methods only. For a given method, it leverages BERT [233] and textCNN [234] to vectorize the
method. After that, it employs an MLP classifier to predict whether the method should be renamed.
The predicted method is renamed only if at least one of its closely related entities has been renamed

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 30

recently. Liu et al. [235] employed unsupervised deep learning techniques to identify and recommend
renaming opportunities. First, for each method in the given corpus, it vectorizes method names and
method bodies by CNN and Paragraph Vector [236], respectively. For a given method whose method
name is mn, and whose method body is md, it retrieves the top k most similar method names from
the corpus and top k method names whose corresponding method bodies are the most similar to md. If
the two sets of method names are highly similar, method name mn is consistent with the corresponding
method body md. Otherwise, they are inconsistent, and thus it selects a method name from the latter
set with a set of heuristics and recommends replacing mn with it.

Since useful refactorings should be frequently applied by various developers on various software ap-
plications, it is likely that we may infer such refactorings from the rich evolution histories of software
applications without knowing exactly what the refactorings are in advance. Consequently, by applying
advanced learning or mining techniques to evolution histories, we may learn (discover) some less-known
refactorings, and can even learn where and how such refactorings could be applied. For example, Tufano
et al. [237] proposed a deep learning-based technique to learn from pull requests and to infer how code is
changed. Among the most frequent changes learned by this approach, refactorings are dominating. After
training the deep neural model with various pull requests, the technique applies the resulting model to
predict expected changes on a given application. Most of the predicted changes are refactorings, and thus
the prediction could be viewed as an automated recommendation of refactorings.

Nyamawe et al. [238] suggested that refactoring activities, as well as other software development ac-
tivities, should be traced to software requirements as well as their changes. Based on this assumption,
they proposed a novel technique to recommend refactorings based on feature requests. It first associates
feature requests with code smells and refactorings by mining software evolution histories. For a new
feature request, it employs various machine learning-based models to predict the required refactorings
based on the feature request as well as code smells associated with related source code.

AlOmar et al. [239] proposed the first just-in-time recommendation approach for extract-method refac-
torings based on copy-and-paste actions. When developers copy and paste a piece of source code, the
approach determines whether the copied fragment of source code should be extracted as a new method.
It leverages a large number of code metrics and uses a CNN to classify code fragments based on the code
metrics.

Chi et al. [240] proposed a novel and more reliable approach called ValExtractor to conduct extract-
local-variable refactorings. The primary challenge in automating extract-local-variables refactorings is
the efficient identification of side effects and potential exceptions between extracted expressions and their
contexts without resorting to time-consuming dynamic program execution. ValExtractor addresses this
challenge by utilizing lightweight static source code analysis to validate the side effects of the selected
expressions. It also identifies occurrences of the selected expression that can be extracted together without
introducing program semantics or potential exceptions.

Besides the generic approaches that could be applied to various software applications, deep learning-
based refactoring recommendation has also been proposed for some special domains, e.g., microservices.
Desai et al. [241] proposed a deep learning-based approach to recommending refactoring opportunities,
i.e., extracting some classes from a monolith application as micro-services. The approach represents
classes as nodes and invocation among them as edges. It also identifies entry points (i.e., APIs of web
applications) and represents such information as attributes of the classes. It then employs a graph neural
network to cluster the nodes (i.e., classes), aiming to minimize the effect of outlier nodes. The resulting
outlier nodes are finally recommended to be extracted as micro-services.

We conclude that both supervised and unsupervised deep learning techniques have been applied to rec-
ommending generic and domain-specific refactoring opportunities. However, we also notice that existing
approaches support only a limited number of refactoring categories, and thus it is potentially fruitful to
recommend more categories of refactoring opportunities by deep learning techniques in the future. We
also notice that some latest advances in deep learning techniques, like large language models (e.g., GPT)
have not yet been fully exploited in automated software refactoring approaches.

7.3 Datasets

Lacking of large-scale and high-quality training datasets is one of the biggest obstacles to deep learning-
based software refactoring. Notably, most existing datasets for software refactorings are built manu-
ally [242] or built by mining refactoring histories [243]. For example, to validate the automated move-

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 31

method refactorings, JMove [218] requested developers to manually check the suggested refactoring op-
portunities, and thus such manually confirmed items could serve as training or testing dataset for future
research in this line. However, such a manually constructed dataset is often too small for sufficient training
of deep neural networks. It is also challenging to enlarge such datasets because the manual identification
of refactoring opportunities is time-consuming and error-prone. Another way to construct datasets of soft-
ware refactorings is to leverage automated refactoring miners to discover actually conducted refactorings
recorded in open-accessed version control systems. A few approaches, e.g., RefactoringMiner [244], RefD-
iff [245], and Ref-Finder [246], have been proposed for such purpose. Although such mining tools could
identify a large number of refactorings from real-world applications, they often result in false positives,
making the resulting dataset unsuitable for model training.

To this end, Liu et al. [219] proposed a novel approach to generating large-scale training data for
the training of deep learning-based refactoring models. In the paper, the authors focused on a single
category of code smells (i.e., feature envy) and its corresponding refactoring (i.e., move-method refactor-
ing). To create positive items (i.e., methods associated with feature envy smells), they randomly moved
methods across classes (with precondition checking of Eclipse move method refactoring), and took the
moved methods as positive items because they had better be moved back to the original place (i.e., their
enclosing classes before the movement). Methods that could be moved (i.e., satisfying the precondition of
move method refactorings) but have not been moved could be taken as negative items, i.e., methods not
associated with feature envy smells. By applying this novel approach to high-quality open-source appli-
cations, they generated huge data sets of refactorings (code smells) where the ratio of positive (negative)
items could be accurately controlled as well. Based on the generated data, they trained a CNN-based
deep neural model to detect feature envy smells and to suggest solutions (i.e., where the associated
methods should be moved). Their evaluation results suggest that the resulting model significantly out-
performs the state-of-the-art approaches. Later, Liu et al. [222] successively expanded this approach to
more categories of code smells, i.e., long methods, large classes, and misplaced classes. Long methods
are created by automated inline refactorings that merge multiple methods into a single one, large classes
are created by merging multiple classes whereas misplaced classes are created by moving classes across
packages. Their evaluation results suggest that employing such automatically generated large datasets
to train deep neural networks could significantly improve the state of the art in code smell detection and
automated recommendation of refactoring opportunities [222]. Currently, this automated data generation
has been employed by almost all deep learning-based refactoring approaches that request labeled training
items [230,247].

Although the quantity of automatically generated training items is satisfying, their quality may still
be questionable. Because the code smells (i.e., positive items) are automatically generated, they could be
significantly different from code smells introduced unconsciously by developers. As a result, deep neural
models trained with such generated artificial data may learn only how to identify artificial smells instead
of real-world code smells. To this end, Liu et al. [243] aimed to improve the precision of refactoring miners,
and thus their discovered real-world code smells and refactorings could be taken directly as high-quality
training data. The key to their approach is to leverage a sequence of heuristics and machine learning-based
classifiers to exclude false positives. Notably, they employed a traditional machine learning technique
(i.e., decision trees) instead of deep learning techniques to exclude false positives. The major reason for
the selection is that traditional machine learning techniques may work well with small (but high-quality)
training data whereas deep learning ones often request much larger dataset that they were unable to
provide. Their evaluation results suggest that by filtering out false positives with their approach, the
precision of the employed refactoring miner (RefactoringMiner [244]) is able to reach a high level compa-
rable to human experts in discovering move-method refactorings. Compared to the artificial feature-envy
methods automatically generated by previous approach [219], such real-world feature-envy methods dis-
covered by the proposed approach could significantly improve the performance of deep learning-based
model in detecting feature-envy smells and in recommending move-method opportunities.

Most of the current refactoring detection approaches often result in non-negligible false positives and
false negatives. To solve this problem, Liu et al. [248] proposed a novel refactoring detection approach
(called ReExtractor). The rationale of ReExtractor is that an entity matching algorithm takes full
advantage of the qualified names, the implementations, and the references of software entities. Compared
against the state of the art, it improves the accuracy of entity matching between two successive versions
and thus substantially reduces false positives and false negatives in refactoring detecting.

Based on the preceding analysis, we conclude that large-scale and high-quality training data are critical

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 32

for deep learning-based refactoring, and data collection remains an open question that deserves further
investigation.

7.4 Challenges and Opportunities

Based on the preceding analysis of deep learning-based software refactoring, we present here a list of
potential challenges and opportunities for future research in deep learning-based software refactorings.

7.4.1 Challenges

• Large-scale high-quality dataset. It remains challenging to collect large-scale and high-quality
refactoring data to train deep learning models. Although generating refactorings to be automatically
reversed as suggested by Liu et al. [219] should result in large-scale refactoring data, the quality
and representativeness are in question. In contrast, discovering refactoring histories in open-source
applications may result in high-quality real-world refactoring data, such data are often small and
lack diversity.

• Generalization across different paradigms. Most of the code bases are written in various program-
ming languages, each with its own syntax and semantics. Developing deep learning models that
generalize well across different languages is a considerable challenge. Currently, most of the studies
in deep learning based refactoring use applications written in Java. Thus, there is little or slow
adoption in other programming languages. Another challenge concerning the generalization is to
make the approaches applicable to all categories of code smells. The identification of code smells is
very crucial in the process of software refactoring. It has been proven challenging to have a general
deep learning model to detect code smells for refactoring as different models behave differently for
specific smells.

• Generic classification and feature engineering. It is very challenging to design general classifier
which may be used for the process of software engineering as different features may be needed for
different refactoring processes.

• Complexity of Code Patterns. Code bases often contain complex patterns and structures. Captur-
ing and representing these patterns effectively for training deep learning models can be difficult,
especially when dealing with large and diverse code bases.

• Context Sensitivity. Refactoring decisions are often context-dependent, considering the broader
system architecture, design patterns, and usage scenarios. Deep learning models might struggle to
capture and understand such context-sensitive information.

• Interpretability. Deep learning models are known for their “black-box” nature, making it challenging
to understand the rationale behind their refactoring recommendations. This lack of interpretability
can be a significant hurdle for developers who need to trust and adopt these suggestions.

7.4.2 Opportunities

• Large language model-based refactoring. Large language models have great potential in smell
detection and refactoring suggestions. Up to date, various deep learning techniques have been
proposed to detect code smells, and/or to suggest solutions to identified code smells. However, to
the best of my knowledge, large language models have not yet been applied to such tasks. Since large
language models are good at understanding and generating source code, it is likely that they can
be employed to format source code and to identify abnormal parts of source code (i.e., code smells).
They may also be employed to discover (and measure) the relationship (like coupling, similarity,
cohesion, and dependency) among software entities. Such a relationship, currently measured by
statistic code metrics only, is critical for the detection of code smells as well as suggestion of
refactoring solutions.

• Automated discovery of new refactorings. Up to date, the academic community focus on well-
known code smells and refactorings. All such smells and refactorings are coined by human experts.
However, with the development in programming languages and new paradigms, new categories of
code smells as well as new categories of refactorings are emerging. One possible way to discover

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 33

such new smells and new refactorings is to mine the evolution history of open-source applications.
With advanced deep learning techniques, it is potentially feasible.

8 Code Clone Detection

Code clones are code fragments that have the same or similar syntax and semantics. The wide presence
of code clones in open-source and industrial software systems makes clone detection fundamental in many
software engineering tasks, e.g., software refactoring, evolution analysis, quality management, defect pre-
diction, bug/vulnerability detection, code recommendation, plagiarism detection, copyright protection,
and program comprehension.

The recent research in code clones has attracted the use deep learning techniques. As shown in Figure
4, most of the research focuses on source code clone detection and source code representation for clone
detection. A little of research focuses on the binary clone detection, cross language clone detection, clone
evaluation and validation.

32

3

5

9

4

Source Code Clone Detection

Binary Code Clone Detection

Cross-Language Clone Detection

Source code representation for clone detection etc.

Clone Evaluation and Validation

Figure 4 Code clone research tasks where deep learning has been applied.

8.1 Source code clone detection

Source code clones are typically classified as follows based on their degree of similarity.

1. Type1: Duplicate code fragments, except for differences in white space, comments, and layout.

2. Type2: Syntactically identical code fragments, except for differences in variable names, literal
values, white space, formatting, and comments.

3. Type3: Syntactically similar code fragments with statements added, modified, or deleted.

4. Type4: Syntactically different code fragments implementing the same functionality.

As the boundary between Type3 and Type4 clones is often ambiguous, in benchmarks like Big-
CloneBench [249] researchers further divide these two clone types into three categories: strongly Type3,
moderately Type3, and Weakly Type3/Type4. Each type is harder to detect than the former one. Weak
Type3 and Type4 clones are usually called semantic clones.

The research efforts on source code clone detection are shown in Table 9. As can be seen from the table,
most of recent research tries to leverage deep neural networks to effectively capture complex semantic
information in code fragments, so as to improve the effectiveness of semantic clone detection.

The code clone detection process begins by modeling the semantic of the source code. To achieve
this goal, diverse program representations such as tokens, Abstract Syntax Trees (ASTs), Control Flow
Graph (CFGs), Data Flow Graphs (DFGs), Program Dependency Graphs (PDGs) are being used to learn
program features.

Various deep learning models, such as CodeBERT, GraphCodeBERT, Graph Neural Network (GNN),
Graph Attention Network, Convolutional Neural Network (CNN), Graph Convolutional Network (GCN),

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 34

ASTNN, Tree-Based Convolutional Neural Network (TBCNN), Recursive Autoencoders (RAE), Recur-
rent Neural Network (RNN), Recursive Neural Network(RvNN), LSTM, have been used.

These studies have achieved higher recall and better precision than the best classical approaches.

Table 9 Source Code Clone Detection

Year Venue Literature Language Code Representation Deep Learning Models Clone Type Benchmark Baseline

2022 ICSME SSCD [250] Java, C/C++ token CodeBERT,GraphBERT Type 3 and Type 4 BigCloneBench,CompanyC, CompanyC++ SourcererCC [251]

2022 IWSC [252] Java token CodeBERT All BigCloneBench,SemanticCloneBench etc. NA

2022 TSE Holmes [253] Java PDG GNN,LSTM ALL GoogleCodeJam, SeSaMe,BigCloneBench TBCCD [254]

2022 ICSR SEED [255] Java,C,C++ Semantic graph GMN Type 4 OJClone, BigCloneBench TBCCD [254],ASTNN [256]

2022 ADES CCCD-DL [257] Java AST,CFG,FCG DNN Type 4 BigCloneBench,opensource projects LV-CCD [258], FCCA [259], and TBCNN [260]

2021 QRS CSEM [261] C Event Embedding Tree GAT Type3,Type4 OJClone CCLearner [262],Deckard [263],CloneWork [264],SourcerCC [251]

2021 APSEC [265] Java,C AST BiC-CNN Type3 and Type4 BigCloneBench, OJClone Deckard [263], DLC [266],CDLH [267],Deepsim [268],ASTNN [256] etc.

2021 Applied Sciences [260] Java AST TBCNN All BigCloneBench Deckard [263],RtvNN [266], CDLH [267], DeepSim [268]

2020 IEICE T INF SYST [269] Java AST CNN,Siamese ALL BigCloneBench NiCad [270]

2020 ASE SCDetector [271] Java,C / C++ CFG GRU,Siamese All GCJ ,BigCloneBench RtvNN [266],ASTNN [256], Deckard [263],SourcererCC [251]

2020 APSEC Sia-RAE [272] Java AST recursive autoencoders (RAE) ,Siamese All BigCloneBench DeepSim [268], CDLH [267],weighted RAE [273]

2020 DSA [274] Java CFG Bi-RNN,GCN Type4 opensource projects Nicad [270]

2020 T-R FCCA [259] Java token,AST,CFG RNN All BigCloneBench Deckard [263], CDLH [267], DeepSim [268],DLC [266],SourcerCC [251],TBCCDcitecd-Yu2019

2020 SANER FA-AST-GMN [275] Java,C/C++ FA-AST GNN All GCJ,BigCloneBench Deckard [263], RtvNN [266],CDLH [267], ASTNN [256]

2020 ISSTA [276] C++ AST,CFG DNN Type4 OJClone Deckard [263],DLC [266],CDLH [267], ASTNN [256], DeepSim [268]

2020 IEEE Access [277] Java AST CNN Type1,Type2 BigCloneBench SourcererCC [251],NiCad [270],Deckard [263],CClearner [262],Oreo [278]

2020 Complexity [279] Java,C/C++ AST BiLSTM All OJClone,BigCloneBench RAEcd-White2016,CDLH [267], ASTNN [256]

2019 IEEE Access weighted RAE [273] Java AST RAE All BigCloneBench Oreo [278],DeepSim [268],CCLearner [262],CDLH [267],Nicad [270]

Deckard [263] SourcerCC [251],CloneWorks [264]

2019 AAAI ACD [280] Java,C AST LSTM All OJClone,BigCloneBench Deckard [263] SourcerCC [251],CDLH [267]

2019 SANER [281] Java AST RvNN,Siamese Network Type4 BigCloneBench Deckard [263]

2019 ICPC TBCCD [254] Java,C AST,token PACE All OJClone,BigCloneBench CDLH [267],Deckard [263],SourcerCC [251],DLC [266]

2019 ISSTA Go-Clone [282] Golang LSFG DNN NA from Github NA

2019 TII [283] C AST GCN NA open source projects VUDDY [284], LSTM

2018 ESEC/FSE Oreo [278] Java metrics,token, DNN with Siamese architecture All opensource projects Nicad [270],Deckard [263], SourcerCC [251],CloneWorks [264]

2018 ESEC/FSE DeepSim [268] Java Semantic features matrix Feed-forward nerual network Type3,Type4 GCJ , BigCloneBench CDLH [267],Deckard [263],RtvNN [266] etc.

2018 ICMLA CCDLC [285] Java BDG,PDG,AST CNN NA open source projects

2018 IJCAI CDOU [286] Java,C AST LSTM.word2vec All OJClone,BigCloneBench CDLH [267],Deckard [263] ,SourcerCC [251] ,RtvNN [266] etc.

2017 IJCAI CDLH [267] Java,C AST LSTM All OJClone,BigCloneBench Deckard [263], SourcerCC [251] ,RtvNN [266] etc.

2017 ICSME CCLearner [262] Java token DNN Type1,Type2,Type3 BigCloneBench Deckard [263], SourcerCC [251],Nicad [270]

2016 ASE RtvNN [266] Java AST RvNN All open source projects Deckard [263]

2016 ICMLA [287] Java metrics MLP All BigCloneBench Deckard [263], SourcerCC [251],Nicad [270] ,CCFiner,IClone

8.2 Code representation learning for clone detection

The studies in Table 10 focus on learning source code representation, so as to automatically capture
the syntactic and semantic information from source code. Then the embedding is applied to code clone
detection, code classification tasks etc. Code similarities can be learned from diverse representations of
the code, such as identifiers, tokens, ASTs, CFGs, DFGs, and bytecode.

Siow et al. [288] performed an empirical study on code representation. They found that the graph-based
representation is superior to the other selected techniques across these tasks. Different tasks require task-
specific semantics to achieve their highest performance; however, combining various program semantics
from different dimensions such as control dependency, data dependency can still produce promising
results. Tufano et al. [289] demonstrated that combined models relying on multiple representations can
be effective in code clone detection and classification.

Table 10 Source Code Representation Learning for Clone Detection

Year Venue Literature Language Code Representation Deep Learning Models Clone Type Bechmark Baseline

2022 ICSE [290] Java,C/C++ token CodeBERT,GraphCodeBERT All OJClone,BigCloneBench CDLH [267],FA-AST-GMN [275],TBCCDcitecd-Yu2019 ect.

2022 SANER [288] C features,token,AST,CPG BiLSTM,LSTM,Transformer,Tree-LSTM,Code2Vec,GAT,GCN,GGNN NA OJClone NA

2022 EMSE [291] Java AST code2vec NA opensource projects NA

2021 ICSE InferCode [292] Java,C/C++ AST TBCNN All OJClone,BigCloneBench code2vec,code2seq,Deckard [263],SourcererCC [251],RtvNN [266]

2021 ICONIP HGCR [293] C,Java SG, EDFG T-GCN,E-GAT All GCJ,BigCloneBench, ASTNN [256],FA-AST,FCCA

2019 ICSE ASTNN [256] Java,C AST ASTNN All OJClone,BigCloneBench TBCNN [294] ,CDLH [267] ,RAE [266],etc.

2019 ICCF TBCAA [295] Java,C AST Tree-based Convolution All OJClone,BigCloneBench CDLH [267],Deckard [263] SourcerCC [251],DLC [266]

2019 ICSME TECCD [296] Java AST Sentence2Vec Type3 BigCloneBench,opensource projects CCLearner [262],Nicad [270],CCAligner [297]

2018 ICSE [289] Java identifier,ASTs, CFGs, and Bytecode RNN All Qualitas.class Corpus [298] NA

8.3 Cross-language code clone detection

The above work on source code clone detection focuses on clones in a single programming language.
However, software systems are increasingly developed on a multi-language platform on which similar
functionalities are implemented across different programming languages [154,299].

The main challenge of cross-language code clone detection is how to reduce the feature gap between
different programming languages.

The studies on cross-language code clone detection are shown in Table 11. These studies focus on
extracting syntactic and semantic features of different programming languages. Nafi et al. [300] used
a Siamese architecture to learn the metric features. Perez et al. [154] used an unsupervised learning
approach for learning token-level vector representations and an LSTM-based neural network to predict
clones. Bui et al. [301] proposed a Bi-NN framework to learn the semantic features of two different

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 35

programming languages. Wang et al. [302] proposed a Unified Abstract Syntax Tree neural network.
Yahya et al. [299] used AST embeddings from InferCode [292] as input of the Siamese architecture.

Table 11 Cross-Language Code Clone Detection

Year Venue Literature Language Code Representation Deep Learning Models Bechmark Baseline

2023 Computers CLCD-I [299] Java,Python AST Siamese architecture [303] coe from programming competition LSTM

2022 ICPC UAST [302] C,C++,Java,Python, JavaScript token Bi-LSTM,GCN JC, dataset collected from leecode InferCode [292]

2019 SANER [301] Java,C++ AST Bi-NN OJClone,opensource projects TBCNN [294] etc.

2019 MSR [154] Java,Python token,AST tree-based skip-gram,LSTM code from programming competition sequential input model

2019 ASE CLCDSA [300] Java,Python, C# Metrics DNN code from programming competition LICCA [304],CLCMiner [305], [154]

8.4 Binary code clone detection

Binary code clone detection can be used in the context of cross-platforms as well as legacy applications
that are already deployed in several critical domains.

Research on binary code clone detection is shown in Table 12.
Xue et al. [306] combined program slicing and a deep learning based binary code clone modeling

framework to identify pointer-related binary code clones. Xu et al. [307] proposed a neural network-
based approach to compute the embedding based on the control flow graph of each binary function, and
then to measure the distance between the embeddings for two binary functions. Marastoni et al. [308]
tackled the problem of binary code similarity using deep learning applied to binary code visualization
techniques. They found that it is important to further investigate how to build a suitable mapping from
executables to images.

Table 12 Binary Code Clone Detection

Year Venue Literature Code Representation Deep Learning Models Bechmark Baseline

2018 MASES [308] visualization graph CNN GoogleCodeJam etc. Shallow Neural Net

2018 FEAST Clone-Slicer [306] CFG,DDG RNN SPEC2006 CloneHunter [309]

2017 CCS Gemini [307] ACFG Structure2vec dataset from [310] etc. Genius [310]

8.5 Clone evaluation and validation

Mostaeen et al. [311] proposed a machine learning based approach for predicting the user code clone
validation patterns. The proposed method works on top of any code clone detection tools for classifying
the reported clones as per user preferences. The automatic validation process can accelerate the overall
process of code clone management.

Saini et al. [312] presented a semi-automated approach to facilitating precision studies of clone detection
tools. The approach merges automatic mechanisms of clone classification with manual validation of clone
pairs, so as to reduce the number of clone pairs that need human validation during precision experiments.

Liu et al. [313] proposed an evaluation methodology that can systematically measure the cross-
functionality generalizability of neural clone detection. They also conducted an empirical study and the
results indicate that the studied neural clone detectors cannot generalize well as expected. They found
that the performance loss on unseen functionalities can be reduced by addressing the out-of-vocabulary
problem and increasing training data diversity.

Yu et al. [314] presented an experimental study to show that BigCloneBench typically includes semantic
clone pairs that use the same identifier names, which however are not used in non-semantic-clone pairs.
To alleviate these issues, they abstracted a subset of the identifier names (including type, variable, and
method names) in BigCloneBench to result in AbsBigCloneBench and used AbsBigCloneBench to better
assess the effectiveness of deep learning models on the task of detecting semantic clones.

Jens and Ragkhitwetsagul [315] performed a manual investigation on BigCloneBench. They demon-
strated that the way BigCloneBench being constructed makes it problematic to use BigCloneBench as
the ground truth for learning code similarity. BigCloneBench fails to label all clone pairs. Moreover,
only a small set of true negatives has been created and, for most of the possible pairs in the dataset, the
ground truth is unknown. This leads to a strong impact on the validity of the ground truth for Weakly
Type3 and Type4 clone pairs, threatening the validity of results for evaluations in the Weakly Type3 and
Type4 category and approaches to learning code similarity.

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 36

Table 13 Source Code Clone Detection

Dataset Literature Language

BigCloneBench [249] Java

OJClone [294] C

GoogleCodeJam (GCJ) [268] Java

SemanticCloneBench [316] Java, C, C#, Python

SeSaMe [317] Java

JC [301] Java, C++

Leetcode [302] C, C++, Java, Python, JavaScript

8.6 Datasets

We summarize datasets used in clone detection in Table 13.
BigCloneBench is a benchmark of inter-project clones from IJaDataset [249], a big Java source code

repository. It has about 8M labeled clone pairs, as well as 260,000 false clone pairs, covering 43 func-
tionalities. BigCloneBench divides Type3 and Type4 clones into four categories: Very-Strongly Type3,
Strongly Type3, Moderately Type3, and Weakly Type3/Type4.

OJClone is generated based on OJ dataset [294] covering 104 functionalities. Each functionality is a
programming question with 500 verified solutions written in C, submitted by students. Two solutions to
the same question can be considered as a clone pair.

GoogleCodeJam (GCJ) is a benchmark similar to OJClone. It contains 1,669 solutions written in Java
for 12 functionalities collected from GoogleCodeJam.

SemanticCloneBench is a benchmark of semantic clone pairs [316]. It consists of four thousand clone
pairs, each for four programming languages (i.e., Java, C, C#, and Python). The clone pairs are col-
lected from the StackOverflow answers. The method pairs to the same questions on Stack Overflow are
considered as semantic clones.

The SeSaMe dataset consists of 857 semantically similar method pairs mined from 11 open-source Java
repositories [317].

The JC dataset includes 10 categories of programs crawled by Bui et al. [301] from GitHub. It contains
5822 Java files and 7019 C++ files. The code files for each category implement the same function.

The Leetcode dataset contains 50 categories of programs from Leetcode, each of which contains 400
semantically similar solutions of five different programming languages, with a total of 20000 files [302].

8.7 Challenges and Opportunities

This section presents the challenges and opportunities for further work on code clone detection.

8.7.1 Challenges

• Challenge to build comprehensive learning-oriented code clone detection datasets. Most of the
existing code clone datasets are of a limited scale due to the effort required in manually constructing
the benchmarks. BigCloneBench is a large-scale dataset and becomes a standard to evaluate and
compare the performance of clone detection tools. Many researchers also use it to train deep learning
models. However, as pointed by Jens and Ragkhitwetsagul, the incomplete ground truth and the
bias and imbalance of the ground truth will have a strong impact on deep learning approaches for
code similarity that learned from Big-CloneBench’s ground truth [315]. Besides, there still lack
standard datasets for cross-language clone detection. Also, there is no clear taxonomy about cross-
language clones. Therefore, it is necessary to build large, cross-language, learning oriented clone
datasets.

• Challenge to cross-functionality generalizability of deep learning-based clone detection. Most of the
deep learning based code clone detection approaches are proposed for detecting semantic clones, and
they have achieved impressive results based on the tested benchmarks. However, according to the
research by Liu et al., these studies are limited in detecting clones whose functionalities have never
been previously observed in the training dataset [313]. Further research on deep learning algorithms

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 37

F
e
a
tu

re
 e

x
tr

a
ct

io
n

...

...

...

m1 ...

...

...

...

mn b

1

0

1...

...

...

m1 ...

...

...

...

mn b

1

0

1

...

...

...

m1 ...

...

...

...

mn b

?

?

?...

...

...

m1 ...

...

...

...

mn b

?

?

?

F
e
a
tu

re
 e

x
tr

a
ct

io
n

Source

versions (projects)

Target

versions (projects)

Train

Supervised

learner

Test

Model

...

...

...

m1 ...

...

...

...

mn b

0

1

1

Evaluate

Performance

report

Training set

Test set Test result

Label

oracle

Label

extraction

Label extraction

Figure 5 The overall structure of supervised defect prediction

for improving the cross-functionality generalizability is required. Moreover cross-functionality gen-
eralizability should also be considered in detection result evaluation.

• Challenge to selecting suitable source code representation. Current deep learning based clone de-
tection approaches use different representations of source code like tokens, AST, CFG, PDG. These
represents vary in clone detection scalability, efficiency and effectiveness. For example, approaches
representing code fragments as sequences of tokens may be more efficient, but they may not be
generalized to source code having out-of-vocabulary tokens, as vocabulary of tokens is unlimited.
Approaches representing code fragments as PDGs help in semantic analysis. However the low ef-
ficiency may prevent them from being used on a large code base. Further research on source code
representation is still needed to deeply analyze the scalability, efficiency and effectiveness.

8.7.2 Opportunities

• Opportunity to explore deep learning in more clone related tasks. A software may contain a lot of
clones but not all clones need to be manipulated. History of clone management helps extract useful
features that can help take various decisions of clone related tasks. For example, deep learning based
recommendation can help automatically identify important clones for refactoring. Deep learning
based methods can also help predict the code clone quality, detect clone related bugs, and reduce
the maintenance cost caused by harmful or risky clones. However, only a few existing studies focus
on these tasks. Research can be further conducted in these areas.

• Opportunity to explore large language model in detecting cross-language code clones. In recent
years, large language models have experienced rapid development. By pre-training on a large
amount of corpus, the model is able to “remember” knowledge from the corpus, including syn-
tax, semantics, etc., thus typically being able to understand the syntax and semantics of different
programming languages. This lays a good foundation for detecting cross-language code clones.

9 Software Defect Prediction

Software Defect Prediction (SDP) aims to forecast potential defect locations in a software project, predict-
ing which modules (such as files, classes, and functions) may contain defects. This predictive information

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 38

is crucial for the software quality assurance process. On one hand, it prioritizes modules awaiting inspec-
tion or testing, facilitating early identification of defective modules in the software project under test. On
the other hand, it guides testing personnel to allocate code review or testing resources more efficiently
and sensibly for each module. Allocating more review resources to modules with a higher likelihood of
defects can help quality assurance personnel discover as many software defects as possible within the
given budget.

As depicted in Fig. 5, in the supervised defect prediction scenario, a learner is utilized to establish
the connections between features and labels using the training set. Subsequently, the learned model is
applied to the test set to predict defect-proneness. For each instance in the test set, the corresponding
features are used to calculate the probability of being defect-prone. If the probability surpasses a pre-
defined threshold (typically set at 0.5), the instance is classified as “buggy”; otherwise, it is labeled as
“clean”. Traditionally, numerous manually crafted features have been employed, such as size metrics,
complexity metrics, cohesion metrics, and coupling metrics. However, these conventional hand-crafted
features primarily rely on syntactic information. Consequently, they fail to capture semantic information,
resulting in limited predictive capability for defect-proneness. To address this limitation, a variety of deep
learning techniques have been adopted to generate powerful semantic features for defect prediction.

Table 14 provides a summary of notable studies that employ deep learning techniques in defect predic-
tion. The table includes information on the publication year and the type of defect prediction addressed
in the first and second columns, respectively. To simplify the presentation, “WPDP” represents Within-
Project Defect Prediction, while “CPDP” represents Cross-Project Defect Prediction. The third column
presents the granularity at which defect prediction is conducted, spanning from file-level to statement-
level. Note that GDRC (Graph of Defect Region Candidates) corresponds to an area of the code file.
The fourth column specifies the utilized deep learning technique. The fifth to ninth columns outline the
inputs provided to the deep learning model for extracting powerful semantic features. An entry marked
with “•” or non-blank signifies that the corresponding information is used as input, while a blank entry
indicates its absence. The last column provides the reference for each study.

From Table 14, we can see that numerous studies have emerged, employing a variety of deep learning
techniques for defect prediction. Among these techniques, CNN, RNN (including LSTM as a variant),
and GCN stand out as the most prominent ones, each offering distinct capabilities that researchers find
advantageous for defect prediction. CNN proves highly effective in capturing localized patterns and spatial
dependencies within the data. RNN excels at capturing sequential and long-term dependencies, which are
particularly valuable in understanding the temporal aspects of defect occurrences. GCN demonstrates
remarkable proficiency in capturing the structural information and intricate inter-dependencies within
code, attributes that are crucial for accurate defect prediction. Overall, the adoption of deep learning
techniques has significantly advanced defect prediction research, offering valuable insights into defect
detection.

Overall, in the defect prediction community, significant attention has been dedicated to utilizing
deep learning in order to generate expressive features and enhance the effectiveness of defect predic-
tion. Through the application of deep learning, remarkable progress has been made in automatically
generating features that are both highly informative and discriminative. This transition from manual
feature engineering to automated feature extraction using deep learning signifies a fundamental change
in approaches to predicting defect-proneness in software systems. The objective is to construct models
capable of comprehending the fundamental traits and complexities of the code, thereby enabling more
dependable and accurate defect predictions.

9.1 Using manually crafted features as the input

In the literature, numerous manually crafted features have been proposed for defect prediction. How-
ever, these features often focus on specific characteristics of a module, and their high-level semantic
relationships are not adequately captured, limiting their defect prediction capability. To address this
limitation, Yang et al. [318] utilized DBN to generate expressive features from a set of initial change
features. This approach results in more powerful change-level defect prediction models. Similarly, Tong
et al. employed SDAEs to extract expressive features from traditional software metrics [323]. Following
their work, a range of deep learning techniques have been explored for this purpose, including deep for-
est [326], DNN [327,339], Layered RNN [328], DAE-CNN [332], Bi-LSTM [334], MDA [344], SSDAE [345],
and TCN [347].

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 39

Table 14 An overview of prominent defect prediction models utilizing deep learning techniques

Year Type Granularity
Deep
learning
technique

Input to deep learning
Reference

Hand-
crafted
features

AST CFG/
CPG

Raw
code
(token)

Other

2015 WPDP Change DBN • Yang et al. [318]

2017
WPDP File CNN CFG Phan et al. [319]

WPDP File CNN • Li et al. [320]

2018

WPDP/CPDP File CNN • Comments Huo et al. [321]

WPDP File RNN •
Change
history

Liu et al. [322]

WPDP File/Function SDAEs • Tong et al. [323]

2019

CPDP File CNN • Qiu et al. [324]

WPDP Change CNN
commit log
+ change

Hoang et al. [325]

WPDP File/Function Deep Forest • Zhou et al. [326]

WPDP File DNN • Xu et al. [327]

WPDP File Layered RNN • Turabieh et al. [328]

WPDP/CPDP File LSTM • Dam et al. [329]

CPDP File Bi-LSTM • Li et al. [330]

2020

WPDP/CPDP File CNN
• (im-
age)

Chen et al. [331]

WPDP/CPDP Change DAE-CNN • Zhu et al. [332]

WPDP/CPDP File/Change DBN • Wang et al. [333]

WPDP File Bi-LSTM • Deng et al. [334]

WPDP/CPDP File
Bi-LSTM
+Attention

• Shi et al. [335]

WPDP Statement LSTM • • Majd et al. [336]

WPDP File LSTM •
Change
history

Wen et al. [337]

2021

WPDP/CPDP File CNN • Shi et al. [338]

CPDP File DNN • Xu et al. [339]

WPDP File GCN • Xu et al. [340]

WPDP File GCN • CDN Zeng et al. [341]

CPDP GDRC GCN CPG Xu et al. [342]

WPDP File LSTM • Wang et al. [343]

CPDP File MDA • Zou et al. [344]

WPDP File/Function SSDAE • Zhang et al. [345]

2022
WPDP/CPDP File Bi-LSTM • Uddin et al. [346]

WPDP Change TCN • Ardimento et
al. [347]

2023
WPDP Code line HAN • Pornprasit et al. [348]

WPDP File CNN • Qiu et al. [349]

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 40

9.2 Using raw source code as the input

Traditional manually crafted features in source code analysis tend to be syntax-based, disregarding the
valuable semantic information embedded in the code. To overcome this limitation, Chen et al. introduced
a novel technique that visualizes the source code of programs as images and then employs CNN to extract
image features [331]. These extracted features are utilized for building more effective defect prediction
models. Uddin et al. leveraged Bi-LSTM to capture expressive features from the embedded token vectors
obtained through BERT applied to the source code [346]. This technique allows effectively harnessing
the semantic information within the code for defect prediction. Furthermore, Pornprasit et al. [348]
adopted HAN to learn semantic features from the surrounding tokens and lines of code. This approach
enables prediction of defective lines more accurately by considering the context and relationships between
different parts of the code.

9.3 Using abstract syntax trees as the input

One significant drawback of using raw source code as input is the disregard for crucial structural infor-
mation when extracting expressive features. To tackle this issue, Li et al. introduced a novel approach,
utilizing a program’s AST (Abstract Syntax Tree) as input to generate semantic features [320]. In their
approach, Li et al. initially extracted token vectors from the program’s AST and then transformed them
into numerical vectors through mapping and word embedding. Subsequently, they fed these numerical
vectors into a CNN, allowing the model to learn both semantic and structural features for defect predic-
tion. Following this breakthrough, several other deep learning techniques have been explored for the same
purpose, including LSTM [329, 343], Bi-LSTM [330, 335], DBN [333], and GCN [340]. These approaches
aim to enhance defect prediction by considering the inherent structural characteristics of the source code,
leading to more effective and accurate models.

9.4 Using graphical representations as the input

Phan et al. emphasized the importance of utilizing precise graphs that represent program flows to capture
the complex semantics of programs accurately [319]. They argued that tree structures like ASTs might
fall short in this regard. To address this issue, Phan et al. adopted CFGs (Control Flow Graphs) and
applied GCN to extract expressive features. By leveraging CFGs, they were able to capture intricate
program dependencies and interactions more effectively. The GCN allows the generation of expressive
features that incorporate both local and global information from the program’s control flow. As a result,
their approach improves the accuracy of defect prediction models by considering the intricate semantics
of the code. In a related study, Xu et al. proposed an alternative approach using CPGs (Code Property
Graphs) as input to GCN [342]. This approach aims to extract even more expressive features for defect
prediction, further enhancing the capabilities of the model in predicting software defects.

9.5 Using hybrid-source information as the input

In addition to source code, other information such as comments, commit logs, and change history contains
valuable insights for defect prediction. Recognizing this, researchers have proposed innovative approaches
to leverage this diverse information for more accurate defect prediction models. Huo et al. introduced
a technique that jointly learns semantic features from both source code and comments for defect pre-
diction [321]. Likewise, Liu et al. utilized the historical version sequence of manually crafted features
from continuous software versions as input for RNN in defect prediction [322]. Subsequent studies follow
a similar path, combining different sources of information. Some explore the joint use of change and
commit logs [325], while others investigate the combination of manually crafted features and CDN (Class
Dependency Networks) [341]. Integrating these diverse data sources provides richer and more expressive
semantic features, leading to further improvements in defect prediction capabilities.

9.6 Datasets

The field frequently relies on datasets like NASA, PROMISE, AEEEM, and Relink, valued for their
extensive coverage of Java and C, the primary programming languages [326, 345]. These datasets pre-
dominantly focus on file-level granularity and typically encompass fewer than 1,000 instances within a
project.

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 41

• Programming language. The majority of datasets comprise open-source projects, prominently
featuring programming languages such as Java, C, and C++ [326]. Typically, these studies encom-
pass around 10 projects, with over 80% utilizing Apache projects.

• Prediction granularity. The datasets exhibit varying levels of prediction granularity, spanning
from file-level, change-level, function-level, to statement-/line-level. File-level granularity is the
most prevalent (nearly 80%), whereas statement-/line-level granularity receives less emphasis [336,
348].

• Training dataset size. In the majority of studies, within-version defect prediction is the norm,
leading to training sets typically comprising fewer than 1,000 instances. Notably, only a handful of
change-level defect prediction studies leverage notably larger datasets, with instance counts reaching
tens of thousands [332].

In summary, existing studies primarily concentrate on projects involving a small number of program-
ming languages, mainly focusing on coarse-grained defect prediction. In particular, the training set sizes
for deep learning are often limited.

9.7 Challenges and Opportunities

While numerous studies have put forward different defect prediction methodologies, several significant
challenges hinder the development of accurate and cost-effective approaches for defect prediction. These
challenges encompass issues like model interpretability, thorough assessment, and the replication of exper-
iments. Simultaneously, there are promising opportunities on the horizon that could potentially address
these challenges in future studies on defect prediction.

9.7.1 Challenges

The application of deep learning to defect prediction presents the following main challenges that need to
be addressed:

• Limited interpretability of control- and data-flow in relation to defect-proneness. Prac-
titioners highly value understanding the root causes within code that contribute to defect-proneness,
particularly concerning control- and data-flow dynamics. Such understanding is pivotal in compre-
hending the occurrence of defects and subsequently addressing them. However, the opacity of deep
learning models presents a challenge, as they are often perceived as black boxes, impeding the
ability to interpret the rationale behind their predictions. This lack of transparency restricts the
interpretability of the models, posing a barrier to the adoption in defect prediction, an area where
interpretability holds critical importance.

• Insufficient assessment of the effectiveness in comparison to traditional models. Many
studies evaluating new deep learning models tend to solely compare them against earlier deep learn-
ing approaches, often neglecting comprehensive comparisons with established traditional models.
This oversight results in a significant gap in understanding the true advancements brought about
by deep learning techniques in defect prediction. Consequently, it becomes challenging to gauge
the tangible progress and assess how deeply these adopted deep learning methodologies truly drive
the field forward compared to well-established traditional models.

• Substantial challenges in replicating the reported findings externally. The absence of
standardized practices for distributing replicated packages, encompassing datasets and their cor-
responding scripts, poses a significant challenge. In practice, it is well known that even minor
variations in the re-implementation of prior models can lead to substantial differences in defect
prediction performance. This lack of transparency and accessibility hinders external validation of
insights derived from past studies. As a result, ensuring the robustness and applicability of reported
conclusions becomes progressively more challenging.

Future studies should aim to address the aforementioned challenges to accurately gauge the progress
made in the field of defect prediction. Failing to do so will hamper our understanding of the extent to
which advancements have been made. Furthermore, there is a risk of unintentionally drawing misleading
conclusions regarding the advancement of the state-of-the-art, potentially leading to missed opportunities
for further progress in defect prediction.

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 42

9.7.2 Opportunities

There are several valuable opportunities available to address the challenges associated with deep learning-
based defect prediction.

• Development of interpretable techniques. One promising opportunity lies in the development
of novel techniques that enhance the interpretability of deep learning models in defect prediction.
Researchers can explore methods such as feature attribution, saliency mapping, and attention mech-
anisms to gain insights into the factors contributing to defect-proneness. These techniques would
enable better understanding of model behavior and facilitate the identification of critical features
and patterns related to defects.

• Comparative evaluation frameworks. A key opportunity is the establishment of comprehensive
evaluation frameworks for deep learning-based defect prediction. This involves designing rigorous
comparative studies that systematically compare the performance of deep learning models with
traditional approaches on diverse datasets. By incorporating various evaluation metrics and statis-
tical analysis, researchers can provide robust evidence on the effectiveness and advantages of deep
learning models.

• Replication and external validation studies. Another important opportunity is to conduct
replication and external validation studies to verify the reported findings in deep learning-based
defect prediction. Collaboration among researchers, sharing of datasets and code, and adopting
open science practices can facilitate the replication of experiments across different research groups.
External validation studies conducted on independent datasets can provide further validation of the
generalizability and reliability of the reported results.

By embracing these opportunities, researchers can address the challenges faced in deep learning-based
defect prediction and pave the way for advancements in model interpretability, performance evaluation,
and the overall reliability of defect prediction systems.

10 Bug Finding

The term “bug” originates from a literal bug (i.e., moth) stuck in the relay of the Mark II computer, and
has been used to denote any defect that violates its specification: unexpected crashes, incorrect results,
and information leakages, etc. Bug finding is a process that involves examining software artifacts (source
code repositories, documentation, and existing test inputs, etc.) and generating a list of potential bugs
with explanations.

The process of bug finding goes beyond mere “wild guesses”. Unlike defect prediction (Section 9), which
identifies loose correlations between software metrics and bugs, bug finding techniques should provide
concrete bug certificates. Certificates can aid developers in accurately identifying the actual presence and
root cause of a bug. Such certificates could be a hint, like a bug anti-pattern, or a specific test case that
triggers a program error. This section discusses the three mainstream approaches to bug finding:

1. Static analysis. Bugs reside within source code, and bugs can be identified by “reading” the source
code and its associated artifacts, without the need to execute the program in a real environment.
Static bug does not require resources (such as hardware platform, computational power, environ-
ment, and dependencies) to bootstrap the software, making it accessible to any party involved in
a software’s life cycle. From Lint tools [350] to bug finders [351, 352], static analysis serves as a
fundamental gate-keeping procedure in the software development process.

2. Dynamic testing. More reliable certificates provide undeniable evidence of a bug’s existence, with
test cases [353] being the most commonly used such certificates. Developers create unit and system
test cases, and software is also extensively validated using machine-generated test cases. Passing
test cases enhance the confidence that the software functions under various circumstances.

3. Formal verification. In theory, one can exhaustively test a (finite-state) system to prove its bug-
freedom. To make this procedure practical, one can leverage path-based abstraction and employ a

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 43

constraint solver to manage the search space [354, 355]. Alternatively, one can provide a machine-
checkable proof to a proof assistant. There have been successful reports on the verification of
compilers [356], operating system kernels [357], and other software systems [358].

The three mainstream approaches have undergone decades of evolution, particularly the classical (for-
mal) algorithmic bug-finding techniques. These techniques rely on algorithms, logical procedures that can
be mechanically implemented over simple axioms, to identify bugs [359]. With the advent of deep learn-
ing, probabilistic techniques based on machine learning have gained popularity, because learned models
can effectively digest inputs from the chaotic and complex human world.

The algorithmic and probabilistic paradigms complement each other in the deep-learning era. This is
because software, which projects the requirements of the probabilistic human world onto the algorithmic
computing world, intersects both of these realms [360,361]. To provide a bug certificate, one must possess
not only a thorough understanding of the requirements but also the ability to engage in complex logical
reasoning.

Therefore, we argue that significant research efforts should be invested to answer how to leverage learned
(albeit imperfect) domain-knowledge to facilitate an effective algorithmic bug-finding procedure. This
approach builds upon the success of AlphaGo [362], harnessing the potential of AI-in-the-(algorithmic)-
loop”, akin to having “experienced human experts” consistently offering insights into software artifacts
and intermediate results whenever decisions are required in static checking, dynamic testing, and formal
verification. On the other hand, it would also be equally interesting to explore whether bug-finding can
be driven by an autonomous agent, like the chain of thought [363, 364], by automatically exploiting the
existing algorithmic bug-finding techniques.

In addition to the classical papers that shed light on the fundamentals of bug finding, this section also
comprehensively surveys recent papers by conducting Google Scholar search using the combinations of
the following two sets of keywords:

• S1: Testing, validation, verification, fuzzing, program analysis, static analysis, dynamic analysis,
symbolic execution, formal methods;

• S2: Neural network (NN), deep learning (DL), machine learning (ML), reinforcement learning (RL),
large language model (LLM), transformer.

We collect recent (2018–2023) papers and narrow our selection to papers from top-tier conferences and
journals in the fields of software engineering, programming languages, and computer systems. Addition-
ally, we include widely-cited papers with 30 or more citations. In total, we select 72 papers for this section
(and more in the case study on vulnerability detection in Section 10.4). These papers are categorized
and discussed as follows.

10.1 Static Bug-finding: Program Analysis

10.1.1 Code proofreading

Even if we do not check against any specification on application behavior, we expect that source code
reads like natural language texts, following the famous quote from student’s first programming class [365]:

Programs are meant to be read by humans and only incidentally for computers to execute;

Readability implies that the code is easier to maintain, and researchers do find that programs resemble
natural-language texts to some extent [366]. This “naturalness” of software serves as the foundation of
code proofreading (by either a human or a checker of probabilistic distribution) by identifying anomalies
that correlate to bugs.

Such “proof reading” can be algorithmic, i.e., checking against formal best-practice specifications
[367, 368] or lint rules [350]. Adding a bit of probability to linters yields interesting chemical reactions:
any “odd” (infrequent) pattern may suggest a bug [369]. This “may belive” approach paves a way for
harnessing the power of both formal templates and code-level counter-coincidental couplings, leading to
the family of bug-finding techniques that mine frequent items and consider minor items as bugs, e.g.,
CP-miner [370].

Today’s deep learning models, which are fine-tuned over billion lines of code (e.g., llama2-code), are far
more capable than finding these counter-coincidental couplings between lexical tokens. Large language

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 44

models exhibit strong usefulness in finding (and even fixing) the “unnatural” bugs, even for semantics
bugs that violate application specifications. For example, GitHub Copilot is an AI pair programmer
which facilitates the finding and repairing of bugs through its context-sensitive recommendations [371].
BUGLAB is a self-supervised approach that trains bug detectors by co-training a bug selector, which
produces bugs that are elusive to detect [372].

Seemingly surprising, the intuition behind these papers is straightforward: a small code snippet is
“almost completely determined” by its surrounding context. Based on the fact that most of the bugs are
not “new” and there are similar bug samples in the training data, a language model can well predict the
existence of them–code proofreading is very useful as a gate-keeping procedure for improving software
quality. On the other hand, we still cannot fully rely on it, either algorithmically or probabilistically, to
find bugs. Probability distributions like ChatGPT are always happy to provide proofreading results and
explanations on the bug, but many times “talks nonsense with a straight face”. Algorithmic lint tools
produce an excessive number of false alarms. These fundamental limitations can be alleviated, but is not
expected to be resolved in the near future [360,373].

10.1.2 Semantic analysis

To catch subtle semantic bugs that appear to be correct and escape proofreading, it is necessary to
understand precisely what a piece of program can and cannot do (i.e., conducting a semantic analysis)
[374]. Observing that each program statement’s behavior has been rigorously defined as a part of the
language specification, it would be theoretically possible to predict a program’s all possible behaviors by
an algorithmic procedure (see Section 10.3; however, the general problem is undecidable [375]). On the
other hand, while today’s language models can somehow find semantic bugs, their probabilistic nature
make them less predictable (and thus less reliable) than algorithms.

Classical semantic analysis strives to over-approximate the programs semantics to obtain sound predic-
tions of program outcomes. In practice, static analysis techniques have to trade off between usefulness,
thoroughness, and engineering efforts. For decades, the data-flow and abstract interpretation framework
dominates the field, and numerous properties about programs can be automatically proved under rig-
orous logical reasoning upon the formal operational semantics [376], and scaling to millions of lines of
code [352].

Still, static analyzers are limited to finding bugs of limited “general” types of semantic bugs like pointer
errors and data races, which are neutral to the application logic. It seems still a long way for today’s
analyzers to automatically prove arbitrary developer’s assertions about program states. Certificates from
state analysis are also imperfect for bug-finding. Static analyzers have to draw indefinite conclusions like
“two variables may have the same value” (but actually not) to achieve scalability, resulting in false bug
certificates.

The paths for algorithmic and probabilistic static analysis have long been diverged, and the progress
to unite them is still exploratory. Probabilistic distributions are useful in providing heuristic hints,
e.g., control of the degree of analysis sensitivity to meet resource constraints [377]. [378] proposes a
technique to learn effective state-selection heuristics from data, in order to keep track of a small number of
beneficial program states in Infer [352]. LLift [379] complements semantic analysis by providing speculate
conclusions on undecided (timeout) symbolic-execution paths. Static analyses can also be complemented
by learned features over reduced programs [380], or leveraging anomaly detection techniques to learn a
balance between precision and scalability [381].

Machine learning can also be incorporated with specific static analysis techniques for better effectiveness
and precision. [382,383] address the challenge of manually developing cost-effective analysis heuristics for
pointer analysis using an algorithm for heuristic learning. LAIT [384] utilizes an iterative learning
algorithm that develops a neural policy to identify and eliminate redundant constraints throughout the
sequence in order to produce a faster and more scalable numerical analysis.

Today’s deep learning models are fundamentally limited in predicting the execution results of even a
small code snippet [385], and we believe that static analysis is a field to be revolutionized by deep learning.
The potential lies in the naturalness of software, which “informally” reflects program semantics, like the
following piece of code, which is difficult to be fully (rigorously) analyzed. On the other hand, a language
model can speculate variable’s types or even possible values at a specific program point [386, 387], even
if the static analyzer cannot prove it. These results may further benefit analyses on other parts of
the program, which may be useful in developing efficient analyses. Unfortunately, there still lacks a

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 45

framework that can simultaneously exploit the power of rigorous and long logical reasoning and the
power of understanding the human-world semantics of programs from LLMs [388,389].

Another promising direction is approximating program semantics via deep-learning models. For exam-
ple, neural program smoothing [390,391] approximates programs as differentiable function of inputs and
accordingly generates new test inputs using gradient descent. [392] constructs a benchmark suite with
28 open-source projects and proposes PreFuzz, which guides fuzzing by a resource-efficient edge selec-
tion mechanism and a probabilistic byte selection mechanism. However, the efficacy of neural program
smoothing remains an area for further exploration according to extensive evaluation [393].

Enabling AI-in-the-loop for static analysis brings another challenge: machine learning models can be as
large as billions of parameters, and it is impractical for static analyzers that frequently query the model.
Today’s AI-aided static analysis is still limited to manual feature engineering, in which simple classifiers
like gradient boosting [378] are used. Deep learning model inference is considerably more expensive, and
the problem remains open.

10.2 Dynamic Bug-finding: Software Testing

10.2.1 Test oracle

Before one can test a program, a fundamental question should be answered first: what do we mean by a
program to be “correct”? Some correctness criteria are obvious: a program should not crash, should be
race-free, memory-safe, assertion-pass, and, most importantly, functional. A somehow desperate fact is
that as long as software reflects a physical-world procedure (i.e., requirements), being functional becomes
a myth1), and this is referred to as the “specification crisis” [394].

In the context of testing, such a specification, which decides whether each test case passes, is called a
test oracle. General programming errors, e.g., semantic errors discussed in Section 10.1, can be a part
of a test oracle and can be effectively checked at runtime. Sanitizers [395, 396] are famous for being
effective in bug-finding for practical systems. However, finding a generic test oracle that decides whether
a program is functional remains as an open problem.

Despite that the research community has a strong focus on modeling and lightweight formal methods
[397], we argue that the test oracle problem may be one of the first problem to be effectively solved
by deep learning. A key observation is that, while programs are generally hard for neural networks to
understand, an execution trace really looks like a (maybe long) story consisting of events. The implication
of this observation is twofold:

1. Deep learning models can mimic a human developers that write test cases or directly act as a human
test operator, and simultaneously generate expected program behavior (test oracle) [398], following
that a test case describes a “natural” procedure in the human world, e.g., generating natural faults
for mutation testing [399].

2. Deep learning models can digest software’s execution traces. Traces can be projected to the human
domain, and a language model can find “common sense violation” cases [400].

Test oracles for unit testing is a promising direction to be solved by machine learning [401, 402].
AthenaTest [403] is a method designed to generate unit test cases through a sequence-to-sequence
learning model, trained first on a large unsupervised Java corpus for denoising and fine-tuned on real-
world methods and developer-written test cases. Atlas [404] is a Neural Machine Translation (NMT)
based approach designed to predict a meaningful assert statement to assess the correctness of the focal
method. [405] leverages a transformer model, first pre-trained on an English textual corpus and then
semi-supervised trained on a substantial source code corpus, culminating in finetuning for generating
assert statements in unit tests. CallMeMaybe [406] is a technique employing natural language pro-
cessing (NLP) to analyze Javadoc comments for identifying temporal constraints, thereby aiding test
case generators in executing method call sequences that adhere to these constraints. TOGA [407] is a
unified transformer-based neural method designed to deduce exceptional and assertion test oracles from
the context of the focal method, effectively addressing units with unclear, absent documentation, or even
missing implementations. ChatUniTest [408] is a ChatGPT-based automated unit test generation tool
which creates adaptive focal contexts from projects, uses them in prompts for ChatGPT, and then val-
idates and repairs the generated tests using rule-based and ChatGPT-based approaches. A3Test [409]

1) For example, more types of genders are recognized by the society over time, but software systems often fall behind.

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 46

is a DL-based approach that addresses the limitations of AthenaTest [403] by incorporating assertion
knowledge with a mechanism to verify naming consistency and test signatures. CodaMosa [398] lever-
ages an LLM to generate unit tests (oracles) to reach a designated program part. To generate test oracles
for games, Neatest [410] navigates through a program’s statements, constructing neural networks that
manipulate the program for dependable statement coverage, essentially learning to strategically explore
various code segments. One can also model the test generation problem as a completion problem [116].

Existing studies show that the quality of LLM-generated test cases (including oracles) still have signif-
icant room for improvement [411–414]. [415] points out that unit tests generated by ChatGPT still suffer
from correctness issues, including diverse compilation errors and execution failures.

The challenge of implementing a “neural test oracle” is that program traces are too verbose for today’s
transformer architecture to digest. Neural networks fall short on finding long-range logical dependencies
in the trace. The probabilistic nature of deep learning models also implies that they are imperfect test
oracles. Nevertheless, we can always generate more test cases, and deep neural networks are not likely
(though still possible) to make false-negative predictions on all test cases that trigger the same bug.

10.2.2 Test input generation

Even if the specification crisis is resolved, bug-finding is still a challenge. The number of test inputs is
astronomically high, and we do not have the resources to examine all of them. This issue, which we refer
to as the “search-space curse,” is akin to finding needles in a haystack. Consequently, we only afford
sampling useful test inputs that exercise diverse program behaviors (in hope of revealing bugs). A natural
idea is to decompose the input space over its structure:

1. Connecting the search space, based on the observation that useful (generally available, e.g., regres-
sion tests [416,417]) inputs can be slightly mutated (modified) to obtain another useful input, which
may manifest different program outcomes. Then, the input space can be decomposed into a graph,
where vertices (inputs) are connected by mutation operators. The exploration procedure can be
guided, e.g., by leaning towards test inputs that cover new code [418–420]. Machine learning is also
useful in creating mutants [391,399,421].

2. Partitioning the search space, and only sample representative test input(s) are selected in the equiv-
alent classes. To alleviate the search-space curse, symbolic execution essentially merges all test
inputs that share the same control-flow path. Then, for every path, we only care about whether
it is reachable or not. The search is postponed, and a clever constraint solver may quickly draw a
conclusion.

We see solid progress in improving how we decompose (and explore) the input space. Learned probability
distributions over test inputs, traces, and execution logs are undoubtedly useful in whenever decisions
should be made, e.g., in ranking the mutants [422,423] or providing useful “golden” seeds [424,425].

Deep learning-based generative models, particularly LLMs, exhibit exceptional performance in code
generation tasks and are thus frequently employed in generating seeds for testing compilers or deep
learning libraries. Deng et al. presented TitanFuzz as the first technique to directly leveraging LLMs
to generate seeds for fuzzing DL libraries [424]. FuzzGPT [425] follows up the work by using LLMs
to synthesize unusual programs for DL fuzzing. WhiteFox [426] uses LLMs to produce test programs
with source-code information to fuzz compilers. Fuzz4All [427] is the first universal fuzzer capable
of targeting a wide range of input languages and their various features. It capitalizes on LLMs for
input generation and mutation, generating diverse and realistic inputs for any language. COMFORT
[428] is another compiler fuzzing framework designed to identify bugs in JavaScript engines, utilizing
advancements in deep learning-based language models for automatic JS test code generation. DeepSmith
[429] uses generative models to generate tens of thousands of realistic programs, thereby accelerating the
fuzzing process of compilers.

Machine-learning can also provide heuristic decisions for accelerating fuzzing. Specific work includes
RegFuzz, a directed fuzzing approach that employs a linear regression model to predict seed effective-
ness, thereby allocating more energy and fuzzing opportunities to efficient seeds [430]. HATAFL [431]
utilizes pre-trained LLMs to construct grammars for protocol message types and assist in mutating
messages for protocol fuzzing. SEAMFUZZ [421] learns effective mutation strategies by capturing the
characteristics of individual seed inputs. [422] proposes a reinforcement learning-based hierarchical seed

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 47

scheduling strategy for greybox fuzzing. RLF [432] models the fuzzing process of smart contracts as a
Markov decision process and uses a specially designed reward system that considers both vulnerability
and code coverage. [433] leverages the Monte Carlo Tree Search (MCTS) to drive DL model genera-
tion, thus improves the quality of DL inference engines. [434] employs machine learning models and
meta-heuristic search algorithms to strategically guide the fuzzing of actuators, aiming to maneuver a
Cyber-Physical System (CPS) into various unsafe physical states. NeuFuzz [423] utilizes deep neural
networks for intelligent seed selection in graybox fuzzing which learns vulnerability patterns in program
paths. Some studies also utilize machine learning models to integrate fuzzing with symbolic execution.
For example, [435] predicts the timing for switching between concrete and symbolic executions. [436]
trains a neural network-based fuzzing policy on the dataset generated by symbolic execution, enabling
the application of the learned policy to fuzz new programs. JOpFuzzer [437] learns the relationships
between code features and optimization choices to direct seed mutation for JIT compiler fuzzing.

The challenge here is similar to incorporating deep learning within static analysis: excessive amount
of expensive queries may outweigh simply exercising more test cases.

Machine learning models generally perform better for domain-specific test input generation. For exam-
ple, WebExplor [438] leverages a curiosity-driven reinforcement learning to generate high-quality action
sequences (test cases) for web testing. FIGCPS [439] adopts deep reinforcement learning to interact with
the Cyber-Physical Systems (CPS) under test and effectively searches for failure-inducing input guided by
rewards. Mobile applications provide a natural human interface, which can be effectively understood by
machine-learning models. QTypist [440] utilizes a pre-trained LLM for generating text inputs based on
the context of a mobile application’s GUI. [441] proposes Deep GUI, which enhances black-box testing
by utilizing deep learning to generate intelligent GUI inputs. AdaT [442] is a lightweight image-based
approach that uses a deep learning model to dynamically adjust inter-event times in automated GUI
testing based on the GUI’s rendering state. Badge [443] is an approach for automated UI testing which
uses a hierarchical multi-armed bandit model to prioritize UI events based on their exploration value
and exploration diversity. Q-testing [444] employs a curiosity-driven strategy to focus on unexplored
functionalities and uses a neural network as a state comparison module to efficiently differentiate between
functional scenarios. [445] introduces Avgust, a system that automates the creation of usage-based tests
for mobile apps by using neural models for image understanding.

Machine learning models are also capable of understanding “stories”–API call sequences.APICAD
[446] and NLPtoREST [447] are tools that enhance REST API testing by applying NLP techniques
from API documents and specifications. [448] describes an adaptive REST API testing technique that
employs reinforcement learning to prioritize API operations and parameters, using dynamic analysis of
request and response data and a sampling-based strategy to efficiently process API feedback.

10.3 Proving Bug-freedom: Formal Verification

10.3.1 Searching for needles in the haystack

To the extreme end of testing, one can theoretically test over all possible inputs to verify that a program
is bug-free (or to find all bugs). Exhaustive enumeration is the ultimate victim of the search-space curse.
While we cannot leverage the small explanation hypothesis in verification (we cannot leave any corner case
unchecked), the idea of search space decomposition still applies2). For example, one can separately verify
each program path, in which each verification is essentially a smaller search problem that can be solved
by a constraint solver. Search spaces may have their own structures and pruning opportunities [449],
which can be accelerated by machine learning [450].

On the other hand, path-based verification is not a silver bullet. Loops, even nested with simple control
flow, post significant scalability challenges to a symbolic verifier. For example, a loop-based popcount
implementation, which sequentially checks each bit of a 32-bit integer and increments a counter when
the bit is set, consists of 232 distinct program paths, and off-the-shelf symbolic execution engines fail to
verify it. Sometimes we may rewrite the above function into one formula that can be recognized by a
constraint solver [451], e.g.,

popcount(x) =
∑

0⩽i<32

AND(SHR(x, i), 1),

2) Decomposition is not limited to input spaces. One can also decompose the search space consisting of program states for

model checking.

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 48

to “offload” the 232 paths to the constraint solver. Generally, we do not have this luck for most of the
practical cases, and symbolic program verification is still limited to small programs. The complexity
issues raised by control flows, pointers, memory allocation, libraries, and environments, are all challenges
to verify practical programs [452].

Dynamic symbolic execution is a path-based program verification technique, and many learning-based
techniques have emerged to ease the search-space curse in symbolic execution. Most studies focus on
employing machine learning techniques to devise an optimized search strategy, thereby reducing the
time and space overhead of path enumeration. Learch [453] utilizes a machine learning model to
predict the potential of a program state, specifically its capability to maximize code coverage within
a given time budget. [454–456] dynamically adapt search heuristics through a learning algorithm that
develops new heuristics based on knowledge garnered during previous testing. There are also techniques to
prune the search space. Homi [457] identifies promising states by a learning algorithm that continuously
updates the probabilistic pruning strategy based on data accumulated during the testing process. Others
optimize symbolic execution from different perspectives, including the prediction and optimization of
path constraints [458, 459], as well as the fine-tuning of search parameters [460], and transformation of
target code [461].

How can probabilistic techniques be useful in software verification, i.e., an exhaustive search over the
input space? The use of machine learning model must be sound, i.e., the checking results remain correct
even under prediction errors. This problem remains open today.

10.3.2 Providing a checkable proof

Proving bug-freedom does not really require an exhaustive enumeration. Programs are rigorous mathe-
matical objects: programs can be regarded as a function taking an input and produces an execution. One
would always provide such a program with a logical proof that asserts all produced executions satisfying
the specification, like we prove the correctness of any algorithm, e.g., bubble sort indeed gives a sorted
array after n−1 iterations. The validity of such proofs can be checked by a proof assistant like Coq [462]
or Isabelle/HOL [463,464], to provide a certificate that the proof is correct [356,357].

Fully automatic theorem proving is hard, even for short mathematical proofs. We could also search for
the proof, carrying the search-space curse, and exploiting deep neural networks for heuristics. In contrast
to programs that implement a human-world requirement, mechanical proofs are quite “unnatural”, and
understanding a proof usually requires a careful examination of the proof stack, while code in mainstream
programming languages reads much more like a natural language text. This implies that training deep
learning models for creating proofs is considerably more challenging [465,466], and learning to accelerate
search for proof tactics is still in preliminary stage [467].

We argue that proofs for verifying software systems have a considerably different structure compared
with proofs for mathematical theorems (the focus of today’s research [468]), and the research community
may have a paradigm shift: the core of a proof is invariants, which “summarizes” what happens in the
intermediates of program execution, to form inductive hypotheses for machine-checkable proofs, and we
identify strong patterns for program invariants. They can be done by humans, and we see opportunities
that human work can be replaced by deep learning, e.g., machine-learning models can rank generated
invariants [469].

An interesting observation is that we are trying to prove that a program satisfies a specification
regardless of the input space size and the program execution length. However, the input space can be
huge (or even infinite), and the program execution can be lengthy! Both the program and the proof
seem much more concise compared with the set of all possible program execution traces, and proof
checking can be done reasonably efficient. This phenomenon, which connects to the small explanation
hypothesis, suggests that the program’s execution space (inputs and their corresponding traces) follows a
somehow simple structure that can be described algorithmically, and we might avoid a costly exhaustive
enumeration. We speculate that practical software implementations are of the same magnitude of the
minimum specification-satisfying implementation, like the “Kolmogorov complexity” of software. The
implications of this phenomenon also remain open.

10.4 Case Study: Vulnerability Detection

Following the above framework, this section further describes how deep learning techniques can improve
the effectiveness and efficiency of finding a specific kind of bugs–security vulnerabilities, which can be

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 49

exploited by attackers to gain unauthorized access, perform malicious activities, or steal sensitive data.

10.4.1 Static Vulnerability Detection

In modern times, the dominant model for software development revolves around library-based program-
ming. The primary objective is to enhance development efficiency, minimize program complexity, and
streamline operations such as development and maintenance. Program documentation plays a crucial role
in providing a natural language description of the program, aiding users in comprehending and utilizing
it effectively. Within a code base, an API serves as an interface that enables users to access its various
functions. These APIs subject to certain security constraints, such as manually releasing function return
pointers, among others. These security constraints, known as security protocols, are documented by the
code base developers within the program documentation. By documenting these protocols, developers
offer users of the code base a valuable point of reference and guidance. During a call to the API, the
developers must comply with the constraints of API calls. Otherwise, API misuse can occur, leading
to serious software security issues, such as NULL pointer dereference, pointer use after free, and logical
bugs, etc.

In recent years, many researchers have used text analysis to find various security problems automat-
ically, including access control configuration errors, wrong access requests, and logic flaws, etc. For
example, application developers provide privacy policies and notify users, but users cannot tell whether
the application’s natural behavior is consistent with their privacy policies. In response to this problem,
Zimmeck et al. [470] proposed a systematic solution to automate the analysis of privacy policies to de-
tect inconsistencies between them and application-specific behavior. Tools such as WHYPER [471] and
AUTOCOG [472] examine whether Android applications correctly describe usage permissions in appli-
cation descriptions. Similarly, Liu et al. [473] used text categorization and rule-based analysis to test for
consistency between standard EU data protection regulations and applicable privacy policies.

The approaches above operate under the assumption that the documentation is accurate and do not
contain errors. Consequently, if the code contains defects related to an API that lacks documentation,
these defects cannot be detected. Cindy et al. [474] examined 52 file systems and discovered discrepancies
between the error codes returned by functions and those recorded in the documentation. This investi-
gation revealed over 1,700 undocumented error codes. Tan et al. [475] utilized a series of rule templates
and a pre-trained decision tree to filter out comments from code that described API usage specifica-
tions. The program was then analyzed with user-provided function names (e.g., lock/unlock function
names) to identify inconsistencies between the comments and the code. TCOMMENT [476] focuses on
parameter values in Java comments and verifies the consistency of exceptions thrown under those values
with the actual types of exceptions thrown by the code. Wen et al. [477] performed data mining on
1,500 software code submissions and manually analyzed 500 to classify inconsistencies between code and
comments. They also discussed the degree to which a code submission necessitates concurrent modifi-
cation of comments, guiding for identifying and resolving inconsistencies between code and comments.
Pandita et al. [478] employed machine learning models to filter out sentences in documents that describe
API usage timing. They subsequently employed traditional natural language processing techniques to
transform these sentences into first-order logical expressions. They further identified code defects that
deviate from these specifications by constructing a semantic diagram of the document statements and
inferring API usage timing specifications. Ren et al. [479] extracted an API Declaration Graph from
semi-structured API declarations and derived usage specifications from the natural language descriptions
within API documents. They then used this information to generate a knowledge graph encompassing
API usage constraints, facilitating the detection of API misuse. Lv et al. [480] introduced Advance,
the first comprehensive API misuse detection tool, employing document analysis and natural language
processing techniques.

Several studies summarize security protocols from many code usage examples for vulnerability detec-
tion. One intuitive way to do this is to automate the analysis of a large amount of code, then take a
majority vote and use the most frequent code used as a reference for API usage. For example, Apisan [481]
extracts usage patterns from a large amount of code through parameter semantics, causality and then
extracts API usage references from usage patterns based on a majority vote. Thus, Apisan no longer
needs to define defect patterns manually. Apex [482] finds criteria for the API return value range on
this branch based on fewer observations of code branch statements that handle errors and then infers
the API’s Error Specification based on the principle that most people are right and diagnosing defects

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 50

for handling code snippets that do not follow the error definition for API return values. Like APEx,
Ares [483] uses heuristic rules to identify error-handling blocks of code. A majority vote on the entry
criteria for these blocks and a range merge results in an API error definition and diagnosing a defect by
checking the return value of the API against a check that violates the error definition. Apisan, Apex,
and Ares all rely on the majority vote, but the majority vote is only sometimes right, which leads to the
fallacy of the inferred specification itself.

Deep learning-based large language models (LLMs), represented by the Transformer structure, are
being applied to vulnerability detection tasks, mainly for static code analysis. Given a piece of code
snippet, LLMs are asked through a question-answering dialogue whether it detects any vulnerabilities
in the code and provides an explanation. However, LLMs still cannot handle various types of sensitive
detection (including flow-sensitive, domain-sensitive, context-sensitive, etc). Therefore, it is necessary to
fine-tune the large model or introduce additional knowledge through prompts to guide LLMs to gradually
correct its analysis results. For specific field program vulnerability detection, such as smart contracts
and shell scripts, due to their short length and low complexity, LLMs usually have a more accurate
performance.

10.4.2 Dynamic Vulnerability Detection

In the field of vulnerability detection, fuzzy testing is an efficient dynamic detection technique. It explores
and detects vulnerabilities in programs by continuously constructing unexpected abnormal data and
providing them to the target program for execution while monitoring program execution anomalies [484].
During security testing, a large amount of data can be produced and further employed, such as test cases,
execution traces, system states, software implementation specifications, and vulnerability descriptions.
This information can be analyzed with deep learning techniques to improve fuzzy testing. For example,
natural language processing can be used to understand text descriptions related to vulnerabilities, which
can assist in generating test cases [485]. Through the strong fitting ability of deep learning models,
mappings between program inputs and states can be accurately established, which can guide test case
mutation [390]. Models trained and generated from existing test cases can automatically learn some input
specifications to facilitate input generation [486]. At the same time, with the trained model, guidance
and reasoning can be performed at a relatively low cost, which helps use deep learning techniques in
real-time during fuzzy testing.

As for the objectives, the application of deep learning in fuzzy testing can be divided into two categories:
reducing human processing overhead and increasing decision intelligence. The former includes reducing
preparation work before testing, such as input model inference and mutation operation customization; the
latter includes tasks such as seed file scheduling, mutation operation scheduling, and test case filtering.

Researchers have proposed to use deep learning algorithms to learn a generation model from existing
test cases for input model inference or to enhance existing input models by automatically understand-
ing auxiliary information such as input specifications using machine learning algorithms [487, 488]. On
the other hand, researchers have used machine learning techniques to customize mutation operations for
different programs. Angora [489] first uses taint analysis technology to obtain input positions that affect
specific branches in a program. By converting branch conditions into input functions, Angora uses gra-
dient descent to mutate corresponding input positions to generate test cases covering specified branches.
This adaptive gradient-based mutation operation does not require manual setting and outperforms ran-
domly using existing mutation operations in experiments.

Subsequently, researchers [390–392] further propose to use a single function to fit the input to the
corresponding branch coverage of a program, followed by selecting input positions affecting specified
branches based on the gradient information of the function and performing targeted mutations accord-
ingly. According to the Universal Approximation Theorem [490], neural networks have strong function
fitting capabilities and can approximate any function. Additionally, they have good generalization ability
and easy calculation of gradients. Therefore, researchers propose to use neural networks as a function
to fit program behaviors, with the principle of larger gradients indicating greater impact on the corre-
sponding edge as the basis for the automatic selection of mutation positions and adaptive mutation based
on the size and direction of gradients. These techniques alleviate the cost of expert-designed mutation
operations to some extent while also having adaptability for different programs.

Due to the inherent randomness of mutation operations, generated test cases may not meet specific
test input generation standards for fuzzy testing. The main cost of a mutation-based fuzzy testing tool

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 51

lies in the execution of test cases [491,492]. If deep learning can be used to filter inputs before execution,
it can reduce unnecessary running costs of target programs and improve the efficiency of fuzzy testing.
Deep learning-based directed fuzzy testing, such as Neufuzz [390] and Fuzzguard [493], provides a novel
approach to filtering redundant test cases. This approach collects a large number of test samples and
uses whether they are reachable on a sensitive path as the classification standard to train deep learning
models to classify and predict the reachability of future test samples. However, one limitation of this
approach is whether the model can accurately understand the code logic. To overcome this limitation,
we need to combine the semantics of the code itself so that the model can correctly understand the logic
of the code and make accurate judgments about test cases.

10.5 Datasets

Considering the naturalness and complexity of modern software systems, it is not likely that anyone can
train neural network models from scratch. Therefore, a mainstream approach to bug-finding is embracing
pre-trained models for static analysis, dynamic testing, and formal verification [398,424]. To train domain-
specific machine-learning models, e.g., for GUI trace understanding or heurstic decision-making, datasets
are needed [390, 404]. Alternatively, one may randomly select a subset of program execution results to
serve as training datasets [453]. A unified, large-scale dataset has not been identified, hence it is not
explored in this discussion.

10.6 Challenges and Opportunities

10.6.1 Challenges

In pursuing effective bug-finding techniques, the challenges for either static analysis, dynamic testing, or
formal verification, all point to the specification crisis and the search-space curse. Interestingly, both the
crisis and the curse arise from the formal aspect of programs and the algorithmic nature of the bug-finding
techniques.

Machine learning, particularly deep learning techniques, serves as a bridge between the algorithmic
realm and the human realm. In short term, even if today’s deep learning models are still superficial
and fall short on long chain of logical inference, they are extremely good at digesting software artifacts.
Whenever there is a need for heuristics, deep learning models have potential to perform significantly better
than hand-crafted heuristics. The effectiveness of heuristics is multiplicative: among a huge number of
decisions, even small improvements may result in magnitudes of significant efficiency improvements.

• To the probabilistic end, while deep learning models are generally replacing human beings in con-
ducting simple, fast jobs like writing unit tests, the context-length of today’s transformers makes
it fundamentally limited in understanding large-scale systems–we still need an effective mechanism
to simplify or reduce large systems such that neural networks can handle various analysis tasks on
these systems.

• To the algorithmic end, we dream one day, a compiler3) is sufficiently powerful to automatically
generate a proof for arbitrary assertions, even in natural language, or provide a counter-example.
All programs that compile will automatically be “provably correct” to some extent. However,
providing a prove, particularly for large-scale programs, are far beyond the capability of today’s
verifiers (model checkers) and automatic theorem provers.

10.6.2 Opportunities

Looking back at the academia’s main theme of bug finding in the past decades, we see the thrive of
both fully automatic bug-finding algorithms and end-to-end models. This is partly because for both
parts we have available benchmarks for the push-button, reproducible evaluation. To go even further,
perhaps we have overlooked the fact that we have developers, Q/A teams, who are also “probabilistic”
and whose performance varies day by day in the loop of software development. We could be more open
to semi-automated techniques that invoke humans, exploit humans, and tolerate biases and errors. Such
“humans” will eventually be replaced by a deep learning model on the availability of data.

3) The term “compiler” may no longer be appropriate at that time. Better to call it a “terminator” that kills programmers.

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 52

• To the probabilistic end, it remains open and interesting whether there is an effective chain-of-
thought to draw useful conclusions on software with the ability to understand both the software
artifacts and analysis results from algorithmic tools.

• To the algorithmic end, we may hit a balance in the middle: in case the compiler is not powerful
enough to prove an assertion, compilation will fail and the program should improve the code to
make the program easier to verify. The Rust programming language is an early-stage attempt
following this pathway [494].

11 Fault Localization

Fault localization (FL) in software engineering is the process of identifying the specific code elements (i.e.,
statements or functions) in a program where defects occur [495,496]. Currently, due to the requirement of
oracles, FL techniques mainly focus on functional bugs, which could be found by correctness specifications
such as unit tests.

Traditionally, FL techniques involve manual debugging techniques [497], such as print statements, code
inspection, and step-wise program execution. While these techniques have been widely used, they can
be time-consuming, error-prone, and inefficient, particularly in large and complex software systems. To
overcome these limitations, researchers from the software engineering community have explored automated
FL techniques. These techniques aim to leverage various information sources, such as program execution
traces, test cases, and code coverage information, to identify the locations in the code base that are most
likely responsible for the observed failures.

Automated FL techniques can be broadly categorized into Heuristic FL and Statistical FL approaches.
Heuristic FL techniques rely on pre-defined heuristic rules to locate the bugs that share similar buggy
behavior. For example, some utilize dynamic dependencies (i.e., program slices) [498], some utilize stack
traces [499], and some mutate the crisis values during test execution [500]. On the other hand, statistical
FL techniques [501–503] build statistical models of buggy programs to analyze the relationships between
code elements and failures. Most statistical FL techniques utilize program spetra [504–506], a kind of
coverage information collected from test execution, to learn a model or a formula and then use it to rank
the code elements. Some use other information sources, such as mutation analysis [507,508]. The former
family is called spectrum-based FL (SBFL), while the latter is called mutation-based FL (MBFL).

Recently, with the rapid development of deep learning, deep-learning-based fault localization (DLFL)
techniques have shown the potential to automate and improve the accuracy of fault localization. By
utilizing neural networks and sophisticated learning algorithms, these approaches can effectively identify
fault-prone regions of code, prioritize debugging efforts, and accelerate the resolution of software defects.
In the following, we divide deep learning-based fault localization into two categories: techniques for
directly enhancing fault localization and techniques for augmenting input data for fault localization.

11.1 Fault Localization Approaches

Before the rise of deep learning, researchers had already attempted to establish a connection between
the coverage information of test executions and the test results, in order to predict the location of
faulty code. As early as 2011, Wong et al. proposed back-propagation neural network models for defect
localization [509]. Subsequently, Wong et al. made improvements by using a more complex Radial Basis
Function network [510].

To the best of our knowledge, Zheng et al. [511] and Zhou et al. [512] first proposed to adopt deep
learning approaches into FL, in 2016 and 2017, respectively. They used a simple full-connection deep
neural network (DNN) that is trained against the same input of the SBFL. The primary evaluation results
show the potential of DNN, which significantly outperforms the DStar approach, which was recognized
as one of the most effective SBFL techniques at that time.

DeepFL, the milestone of DLFL, gained huge attention in the field of software engineering [513]. To
address the limitations of traditional fault localization techniques, DeepFL utilizes various deep learning
architectures, such as MLP, and RNN, to capture different aspects of the software system and learn
intricate patterns and correlations. By training on labeled data consisting of program execution traces,
test cases, and associated fault information, DeepFL is able to make accurate predictions on the likelihood
of specific code locations being responsible for failures. The complex DNN models enable DeepFL to

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 53

handle multiple kinds of information (including SBFL features, MBFL features, and code-complexity
features) and complex run-time traces.

Zhou et al. proposed CNN-FL [514], which utilizes a tailored CNN model to process data for FL.
First, CNNs are capable of effectively learning local features of the code, leading to more accurate fault
localization. Second, CNN-FL can handle large-scale software systems and exhibits good scalability on
extensive code repositories. Finally, this approach does not rely on specific feature extraction techniques
but rather automatically learns the most relevant features through the network.

Li et al. proposed DEEPRL4FL [515], a fault localization approach for buggy statements/methods.
DEEPRL4FL exploits the image classification and pattern recognition capability of the CNN to apply
to the code coverage matrix. CNNs are capable of learning the relationships among nearby cells via
a small filter and can recognize the visual characteristic features to discriminate faulty and non-faulty
statements/methods. To date, DEEPRL4FL still holds the best performance in terms of the Top-1
metric.

Lou et al. proposed GRACE [516], a method-level FL approach based on the graph-neural network
(GNN). GRACE represents a program by a graph, where nodes represent code elements or tests, and edges
represent coverage relationships or code structures. By leveraging the power of graph representations and
learning latent features, the approach enhances fault localization accuracy and helps identify faulty code
locations more effectively.

Qian et al. utilized graph convolutional neural networks (GCN) to improve localization accuracy and
proposed AGFL [517]. AGFL represents abstract syntax trees by adjacent matrix and program tokens
by word2vec, and then combines these features to further train GCN models. AGFL applies attention
and GCN to classify whether an AST node is buggy.

Qian et al. proposed GNet4FL, which is based on the GCN [518]. To improve the performance,
GNet4FL collects both static features based on code structure and dynamic features based on test results.
It utilizes GraphSAGE to generate node representations for source codes and performs feature fusion
for entities consisting of multiple nodes, preserving the graph’s topological information. The entity
representations are then fed into a multi-layer perceptron for training and ranking.

Zhang et al. proposed CAN, a context-aware FL approach based on GNN [519]. CAN represents
the failure context by constructing a program dependency graph, which shows how a set of statements
interact with each other. Then, CAN utilizes GNNs to analyze and incorporate the context (e.g., the
dependencies among the statements) into suspiciousness evaluation.

Li et al. proposed FixLocator [520], a DLFL approach that can locate faulty statements in one or
multiple methods that need to be modified accordingly in the same fix. FixLocator utilizes dual-task
learning with a method-level model and a statement-level model. Similarly, Dutta et al. designed a
hierarchical FL approach that uses two three-layer DNNs to first localize a function and then localize a
statement [521].

Yu et al. proposed CBCFL, a context-based cluster approach that aims to alleviate the influence of
coincidental correctness (CC) tests [522]. CBCFL uses the failure context, which includes statements
that affect the output of failing tests, as input for cluster analysis to improve CC test identification. By
changing the labels of CC tests to failing tests, CBCFL incorporates this context into fault localization
techniques.

Li et al. proposed a two-phase FL approach based on GNN [523]. It extracts information from both
the control flow graph and the data flow graph via GNN. The localization process is divided into two
phases: (1) computing the suspiciousness score of each method and generating a ranking list, and (2)
highlighting potential faulty locations inside a method using a fine-grained GNN.

Yosofvand et al. proposed to treat the FL problem as a node classification problem, where the Gumtree
algorithm is used to label nodes in graphs comparing buggy and fixed code [524]. This paper uses
GraphSAGE, a GNN model that handles big graphs with big neighborhoods well.

Wu et al. proposed GMBFL which improves MBFL via GNN [525]. Existing GNN-based approaches
mainly focus on SBFL, while GMBFL first represents mutants and tests by a graph. The nodes of a graph
are code elements, mutants, and tests. The edges are the mutation relationship between a code element
and a mutant, the killed relationship between a mutant and a test, and the code structural relationship
between two code elements of different hierarchies. Then GMBFL trains a Gated Graph Attention Neural
Network model to learn useful features from the graph.

In addition to test-based fault localization methods, there are also approaches that localize the bugs
from change sets. BugPecker [526] is the first to encode the commits and bug reports into revision graphs.

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 54

Ciborowska et al. proposed to fine-tune the BERT model for locating the buggy change set [527].
To evaluate and compare the performance of different DNN models, Zhang et al. processed a large-

scale empirical study [528], which involves CNN, RNN, and multi-layer perceptron. The evaluation results
show that CNNs perform the best in terms of identifying real faults.

11.2 Data Augmentation and Data Processing Approaches for Fault Localization

Data augmentation refers to the technique of artificially increasing the size and diversity of a dataset
by applying various transformations or modifications to the original data. It plays a crucial role in
improving the performance and robustness of deep learning models. In the context of fault localization,
data augmentation can be used to enhance the effectiveness of deep learning-based approaches to fault
localization.

Zhong and Mei proposed CLAFA [529], which employs word embedding techniques to process the
names within code. Then it compares program dependency graphs from buggy and fixed code to locate
buggy nodes and extracts various graph features for training a classifier.

Zhang et al. address the data imbalance problem in FL [530], which is caused by the fact that the
number of failing test cases is much smaller than that of passing test cases. This paper employs test
case resampling to representative localization models using deep learning, and improves the accuracy of
DLFL.

Xie et al. proposed Aeneas [531], which employs a revised principal component analysis (PCA) to
generate a reduced feature space, resulting in a more concise representation of the original coverage matrix.
This reduction in dimensionality not only improves the efficiency of data synthesis but also addresses the
issue of imbalanced data. Aeneas tackles the imbalanced data problem by generating synthesized failing
test cases using a conditional variational autoencoder (CVAE) from the reduced feature space.

Hu et al. proposed Lamont, which uses revised linear discriminant analysis (LDA) to reduce the
dimensionality of the original coverage matrix and leverages synthetic minority over-sampling (SMOTE)
to generate the synthesized failing tests [532].

Lei et al. proposed BCL-FL [533], a data augmentation approach based on between-class learning. By
leveraging the characteristics of real failed test cases, BCL-FL produces synthesized samples that closely
resemble real test cases. The mixing ratio of original labels is used to assign a continuous value between
0 and 1 to the synthesized samples. This ensures a balanced input dataset for FL techniques.

Lei et al. proposed CGAN4FL [534], a data augmentation approach to address the data imbalance
problem in FL. CGAN4FL employs program dependencies to create a context that exposes the root causes
of failures. Subsequently, CGAN4FL harnesses a generative adversarial network (GAN) to examine this
failure-inducing context and generate test cases that belong to the minority class (i.e., failing test cases).
Ultimately, CGAN4FL integrates the synthesized data into the existing test cases to obtain a balanced
dataset suitable for FL.

Zhang et al. proposed UNITE [535], which utilizes context information of trace data. UNITE combines
three sources of information (i.e., a statement, a test case, and all test cases of a test suite), and then
computes the influence relationship of the statements by program dependencies. In evaluation, UNITE
significantly improves the state-of-the-art DLFL approaches.

Also, researchers try to improve DLFL from other aspects. Tian et al. proposed to use DNNs to
extract deep semantic changes to construct better mutants to improve FL performance [536]. Zhang et
al. proposed to synthesize failing tests to improve the performance of DLFL [537].

11.3 Evaluation Metrics

Evaluation metrics play a crucial role in assessing the performance of FL techniques. Similar to traditional
FL approaches, DLFL studies adopt the commonly used metrics, shown as follows:

1. Top-N. This metric measures the number of the model in identifying the correct faulty code element
within the top-N ranked elements.

2. MAR. MAR (Mean Average Rank) is the mean of the average rank.

3. MFR. MFR (Mean First Rank) is the mean of the first faulty statement’s rank of all faults using
a localization approach.

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 55

Table 15 The Frequently Used Evaluation Metrics.

Metric Name Used Times Reference

Top-N 12 [515] [513] [516] [517] [518] [520] [522] [526] [527] [534] [535] [525]

MAR(Mean Average Rank) 8 [515] [513] [516] [517] [518] [534] [535] [525]

MFR(Mean First Rank) 8 [515] [513] [516] [522] [534] [535] [523] [525]

EXAM 6 [509] [510] [511] [512] [514] [521] [523]

RImp(Relative Improvement) 6 [512] [514] [519] [522] [534] [535]

MAP(Mean Average Precision) 2 [526] [527]

MRR(Mean Reciprocal Rank) 2 [526] [527]

Hit-N(multi-defects) 1 [520]

4. EXAM. EXAM stands for Expected Maximum Fault Localization, which measures the expected
rank of the first correct fault location in a ranked list of code elements.

5. RImp. RImp (Relative Improvement) is to compare the total number of statements that need to
be examined to find all faults using one FL approach versus the number that need to be examined
by without using the FL approach.

6. MAP. MAP (Mean Average Rank) first computes the average precision for each fault, then calcu-
lates the mean of the average precision.

7. MRR. MRR (Mean Reciprocal Rank) metric calculates the mean of the reciprocal position at
which the first relevant method is found.

8. Hit-N. Hit-N is a metric designed for multi-defects, which measures the number of bugs that the
predicted set contains at least N faulty statements.

Table 15 summarizes the commonly used metrics. The most popular metrics are Top-N and EXAM,
which are used eight times and six times, respectively. RImp, MFR, and MAR are used four times, which
are less common. MAP and MRR are used in only two studies, while the Hit-N metric is used only once
to measure the multi-defect FL approaches.

11.4 Datasets

The datasets used in the DLFL field are largely similar to those in the program repair and other related
fields. Current approaches primarily utilize Java programs for evaluation, with a smaller portion using
C language programs.

In Java, the Defects4J [538] benchmark is the most extensively used. Defects4J is a widely recognized
benchmark dataset in the FL field. This dataset is well-maintained and continues to be updated. Early FL
techniques uses Defects4J v1.2, primarily evaluating against six projects within it. Recent work employs
Defects4J v2.0, which includes more open-source projects. Additionally, the BEARS [539] benchmark
and nanoxml from the SIR [540] dataset are also employed.

In C, some C programs from the SIR dataset, as well as the ManyBugs [541] dataset, are more frequently
used. Existing DLFL research has utilized programs like space from the SIR dataset, as well as python,
gzip, libtiff, and others from the ManyBugs dataset.

11.5 Challenges and Opportunities

This section summarizes the challenges and highlights opportunities for future work in fault localization.

11.5.1 Challenges

Deep learning-based fault localization techniques have shown great potential in improving the accuracy
and effectiveness of fault localization. However, they also face the following challenges that need to be
addressed to fully exploit their capabilities.

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 56

• The risk of overfitting. The current existing DLFL approaches are mainly evaluated on the
popular benchmark Defects4J [538], which consists of Java projects and hundreds of bugs and is used
as an important dataset in debugging-related fields. Most papers use Defects4J v1.2, which only
contains 395 bugs from six Java projects. Worse still, some approaches discard the Closure project
and only use 224 of the bugs. This leads to the risk that the conclusions of most existing methods
might be overfitting to this particular dataset or the Java programming language. Currently, there
exist a few studies that target Python or JavaScript programs and we suggest evaluating the novel
approaches across multiple languages and benchmarks.

• Inadequate availability of high-quality labeled data. The current research is limited to the
Defects4J dataset due to a shortage of high-quality labeled data. This scarcity not only affects
the evaluation of DLFL approaches but also impacts the training of deep learning models. In
addition, existing FL data suffer from imbalance, i.e., the data from passing tests overwhelms the
data from failing tests. This characteristic poses challenges for many learning-based approaches.
Deep learning models require a large amount of accurately labeled data for training, which can be
difficult to obtain, especially when dealing with real-world bugs across different languages.

• Interpretability of deep learning models. The lack of interpretability has long been a challenge
for deep learning and similarly affects fault localization based on deep learning, which makes it
difficult to analyze the results of fault localization, specifically the relationship between failing
tests, the code elements, and the traces.

• Occasionally low efficiency. The current fault localization systems struggle to achieve real-time
fault localization. This is partly due to their reliance on test runs to collect trace information and
partly because large-scale deep-learning models could slow training and prediction.

11.5.2 Opportunities

Despite these challenges, deep learning-based fault localization techniques present the following promising
opportunities.

• Data augmentation. As discussed in current challenges, existing DLFL approaches are suffering
from low-quality data that are imbalanced or of limited scale. Thus data augmentation methods
offer avenues for addressing the challenge.

• Enhancing multiple FL. Existing DLFL approaches generally assume that there is only one
bug in the target project. However, a real-world buggy project often contains multiple bugs. The
interaction between these bugs makes it more difficult to train and predict using traditional learning
approaches, highlighting potential opportunities for improvement in this direction.

• The integration of domain-specific knowledge. FL relies on code syntax structures, code
semantics, and execution traces, which require a deep understanding of the underlying programming
languages and software engineering principles. The integration of domain-specific knowledge, such
as code smells, development experience, and debugging heuristics, can significantly improve the
effectiveness of FL systems. Especially, representing and learning context information of the buggy
code is promising, because it enables the models to better understand the specific scenarios in which
faults occur and how they relate to the text execution.

12 Program Repair

Program repair refers to the process of identifying and fixing software defects in programs. Program repair
requires a large number of time costs and human resources from the project development team [542]. Due
to the growing demand for efficient software maintenance, automatic program repair techniques have
emerged as a solution [543].

Automatic program repair allows developers to automate (or nearly automate) defect detection and
correction. This makes program repair efficient, reliable, and cost-effective [544]. In recent years, the
development and implementation of automatic program repair techniques have been widely recognized
by the software development community [545]. The success of deep learning in recent years makes it a

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 57

promising approach for locating and repairing buggy programs. The family of deep learning approaches
to program repair develops and applies deep learning techniques to identify software defects and generate
patches [546]. Deep learning models have been widely applied to repair a wide range of program errors.
We divide existing work into three categories, including compilation error repair, runtime error repair,
and specific domain error repair.

12.1 Compilation Error Repair

A compilation error is an error that can be detected during compilation. Programs with compilation
errors fail in program compilation or linking; meanwhile, programs with compilation errors cannot be
directly handled by program analysis tools [547–549].

Compilation errors prevent source code from being transformed into executable machine code during
compilation. These compilation errors contain issues like type errors, undefined variables, syntax errors,
and other errors that violate programming language standards. Studies in the early stage have proposed
error-correcting parsers to achieve program repair of faulty code [550–553]. Recently, researchers have
explored the advantage of deep learning techniques for automatically fixing compilation errors. These
techniques use deep neural networks to analyze extensive repair datasets and recommend precise code
fixes [545].

To avoid misleading messages returned by compilers, Gupta et al. [554] trained a deep neural network,
named DeepFix, to identify incorrect locations in source code and provide the corresponding repaired
statements. They collected 6,971 erroneous C programs from code written by students for 93 programming
tasks and found that DeepFix is able to completely repair 27% and partially repair 19% of these erroneous
programs. Bhatia et al. [555] presented RLAssist, a technique that combines recurrent neural networks
(RNNs) with constraint-based reasoning to fix programming assignments with syntax errors. Ahmed
et al. [556] proposed an end-to-end system, called Tracer, for fixing code with multiple errors. In the
same year of 2018, Santos et al. [557] proposed an approach to correcting syntax errors using n-gram and
LSTM models. They evaluated the approach on the BlackBox dataset [558].

Mesbah et al. [559] proposed Deepdelta, which converts an Abstract Syntax Tree (AST) into a domain-
specific language before feeding the converted tree into a Neural Machine Translation (NMT) network.
Deepdelta achieves a success rate of 50% in generating correct repairs for missing symbols and mismatched
method signatures. Gupta et al. [560] proposed a programming language correction framework that uses
reinforcement learning to assist novice programmers with syntactic errors. This framework outperforms
their previous work DeepFix [554] in 2017. Wu et al. [561] trained a deep learning model on the DeepFix
dataset. The model, called graph-based grammar fix, combines token sequences and graph structures
based on ASTs to predict the error position and generate correct tokens. To integrate program-feedback
graphs and a self-supervised learning framework, Yasunaga et al. [562] proposed DrRepair, a program
repair technique based on graph attention networks.

With the rapid development of deep learning, the effectiveness of automatic program repair has been
further improved. Hajipour et al. [563] proposed a generative model for fixing compilation errors in
C programs. Their model learned a distribution over potential fixes and encourages diversity over a
semantic embedding space. Allamanis et al. [372] proposed to train a selector concurrently with the
model that locates and fixes errors in source code. The selector was utilized to automatically generate
faulty code, which is used to enrich the training set for the original model. To make the generated
faulty code closely resemble real-world error scenarios, Yasunaga et al. [564] proposed BIFI, an iterative
training approach for fixing syntax errors. They trained two models, including the breaker and the fixer,
in an iterative manner. The breaker creates faulty code that closely resembles real-world errors while the
fixer converts the faulty code into the correct version. Ahmed et al. [565] presented a lenient parser for
imperfect code (i.e., the union of fragmentary code, incomplete code, and ill-formed code) and proposed
an indirectly supervised approach for training the parser. To fix the parser errors in programming
languages, Sakkas et al. [566] proposed a language-agnostic neurosymbolic technique in 2022. Their
technique, called Seq2Parse, combined symbolic error correcting parsers and neural networks. Seq2Parse
was evaluated on 1.1 million Python programs. Li et al. [567] proposed TransRepair, which utilizes a
Transformer-based neural network via considering both the context of erroneous code and the feedback by
compilers to fix compilation errors in C programs. Ahmed et al. [568] introduced SynShine, a three-stage
approach that combines the feedback of Java compiler with models based on a Robustly Optimized BERT
(Roberta) [569]. They indicated that SynShine achieves 75% of effectiveness in fixing the single-line errors

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 58

of the code in the Blackbox dataset [558].

12.2 Runtime Error Repair

Runtime errors, also known as dynamic errors, occur when the program executes. Runtime errors result in
crashes or incorrect behaviors during program execution. Automatic program repair techniques generate
patches for faulty code based on test cases, crashes, references, contracts, etc [570].

Approaches to runtime error repair can help save time costs and effort in software development. These
repair approaches can be roughly divided into search-based repair [571,572], constraint-based repair [573–
575], template-based repair [576–578], and learning-based repair [579–581]. With the support by deep
neural networks, learning-based repair approaches can generate high-quality code patches. The framework
of repair approaches based on deep learning for runtime errors generally consist of five steps: fault location,
data pre-processing, feature extraction, patch generation, and patch selection.

Long et al. [582] proposed a hybrid repair system, called Prophet. Prophet integrates a probabilistic
model trained on the benchmark presented by Goues et al. [583] and ranks code patches to fix runtime
errors. Tufano et al. [584] investigated the possibility of learning patches through the translation model
based on neural networks. Their model achieves a prediction rate of 9% via training on the GitHub
repositories.4) Sun et al. [585] developed a sequence-to-sequence service based on the attention techniques.
White et al. [579] presented a deep learning model, DeepRepair, to produce patches that cannot be
searched by redundancy-based techniques. Tufano et al. [237] explored the potential of an NMT model
to create code changes made by developers during adding pull requests.

Researchers have been exploring new ways of tackling issues in program repair. Ding et al. [586] con-
ducted a study that investigates the differences between sequence-to-sequence models and translation
models for program repair. They proposed a strategy based on the empirical findings and development
knowledge in patch generation. Yang et al. [587] proposed an automatic model to locate faults and gener-
ate patches. They scored the ranks between bug reports and source code based on Convolutional Neural
Networks (CNNs) and auto-encoder. Then, they created patches through the Seq-GAN algorithm [588].
Lutellier et al. [589] proposed CoCoNuT, which leverages the strength of CNNs and NMTs to achieve
multi-language repair for Java, C, Python, and JavaScript programs. Li et al. [21] proposed DLFix, a
dual-level deep learning model designed to address the limitations of learning-based program repair. The
first layer of DLFix is a tree-based RNN model that captures the context of fixed code while the second
layer utilizes the output from the first layer to learn and apply code patches. The validation experiments
are conducted on the datasets of Defects4J 5) [590] and Bugs.jar 6) [591]. Tian et al. [592] explored differ-
ent deep learning-based approaches. Their experimental results show that embeddings from pre-trained
and re-trained neural networks are beneficial to reason and generate correct patches. Dinella et al. [593]
proposed Hoppity, a Javascript-targeted automatic repair model. This learning-based model focuses on
graph structures of faulty code.

Tang et al. [594] proposed a grammar-based approach to syntax correct patch generation. Huang et
al. [595] discussed the use of a pyramid encoder in seq2seq models to reduce computational and memory
costs while achieving a similar repair rate to their non-pyramid counterparts. Their study focuses on
automatic correction of logic errors. Jiang et al. [581] presented a three-stage based NMT model, called
CURE. They first pre-trained a programming language model to incorporate the real-world coding style
and then proposed a technique to expand the search space. They integrated subword tokenization,
a technique used in natural language processing that splits words into smaller units called subword
tokens, to generate precise patches. Based on the Long Short-Term Memory (LSTM) network and the
bidirectional recurrent neural network, Rahman et al. [596] presented BiLSTM to identify and classify the
faulty code and generate possible fixes. Chen et al. [580] proposed SequenceR, a sequence-to-sequence-
based deep learning system. The model adapts a copy mechanism to deal with large-scale code instances.
Berabi et al. [597] proposed TFix, a pre-trained and fine-tuned language model that generates improved
patches for JavaScript programs. Tang et al. [598] proposed a Graph-to-Sequence learning model called
GrasP, based on code structure. Szalontai et al. [599] focused on the uncommon parts of Python code.
They constructed a neural network model to classify and generate replacement code snippets.

4) https://github.com/.

5) https://github.com/rjust/defects4j.

6) https://github.com/bugs-dot-jar/bugs-dot-jar.

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

https://github.com/
https://github.com/rjust/defects4j
https://github.com/bugs-dot-jar/bugs-dot-jar

Sci China Inf Sci 59

Li et al. [600] proposed DEAR, a deep learning-based repair approach, which attempts to locate multi-
bugs and generate patches to fix multiple errors in a single program. Xu et al. [601] presented M3V,
an approach that integrates LSTM and GNN models for fault location and patch generation. Their
approach primarily focuses on null-pointer exceptions and out-of-bounds exceptions in Java programs.
Meng et al. [602] introduced Transfer, a technique that mines deep semantic information. Their model
integrates multiple features to rank patches, including semantic-based features, spectrum-based features,
and mutation-based features. Kim et al. [603] focused on locations of software defects. They improved the
accuracy of deep learning approaches in program repair via using genetic algorithms to obtain the precise
defective code. Wardat et al. [604] proposed DeepDiagnosis, which focuses on defects in deep learning
applications. Using well trained models, DeepDiagnosis classifies faults into eight categories and provides
feasible patches for each category of faults. Yao et al. [605] proposed Bug-Transformer, a context-based
deep learning model. Bug-Transformer retains the contextual information of the faulty code and uses a
transformer model for training. Yan et al. [606] proposed CREX, a transfer-learning-based technique [607]
for validating C program patch correctness. Their model aims to learn the code semantic similarity to
improve the accuracy validation. Chakraborty et al. [608] proposed CODIT, a tree-based deep learning
model for generating code change suggestions. Ye et al. [609] proposed RewardRepair, an NMT-based
model with fine-tuned loss functions. RewardRepair incorporates compilation information and test cases
into the calculation of the loss functions. Ye et al. [610] also proposed ODS, a deep learning system for
predicting patch correctness. They extracted code features in ASTs from patches and buggy code. Then,
they employed supervised learning to determine the correctness of patches. Another technique proposed
by Ye et al. [611] is SelfAPR, a self-supervised model based on employing perturbation-generated data for
patch generation. Xia et al. [612] proposed AlphaRepair, a CodeBERT based model for code generation.
AlphaRepair uses zero-shot learning techniques rather than training models with historical erroneous
and corrected code. Kim et al. [613] investigated the efficacy of deep learning-based repair techniques for
Java-to-Kotlin conversion programs. Their technique enhances the defect fixing performance by applying
transfer learning techniques. Tian et al. [614] proposed BATS, a learning-based model designed to predict
the correctness of patches. BATS is an unsupervised model that repairs faulty programs by detecting
program behavior during failed test cases. Yuan et al. [615] proposed CIRCLE, a T5-based model for patch
generation. CIRCLE employs continual learning techniques and is able to work on multiple programming
languages. They also designed the Prompt feature to make it capable of understanding natural language
commands. Chen et al. [616] trained an iterative model, which aims to learn from generated patches and
test execution.

12.3 Specific Domain Error Repair

Deep learning has also been applied to domain-specific tasks related to automated program repair. The
specific domain repair refers to the application of specialized knowledge or techniques from a specific
domain to improve the effectiveness and efficiency of program repair.

Test repair aims at fixing errors in test cases that are unusable due to software updates. Stocco et
al. [617] fixed web test cases by analyzing visual features based on an image processing approach. Pan et
al. [618] presented Meter, a computer vision based technique for fixing test cases in the Graphical User
Interface (GUI) of mobile applications.

Build scripts are crucial components in the automatic building of software systems. Program repair
for build scripts refers to the process of automatically detecting and fixing faults in build scripts [619].
Hassan et al. [620] built a benchmark of 175 build failures and the relevant remedies for Gradle.7) They
presented HireBuild as the first model of patch generation for fixing build scripts in Gradle. Based on
the previous work of HireBuild, Lou et al. [621] extended the benchmark from Top-1000 GitHub projects
and proposed an improved search model, which generates patches according to current test projects and
external resources. Recently, Loriot et al. [622] proposed STYLER, an approach based on the LSTM
neural network to generate patches for code violations against format rules.

Software vulnerability refers to security weaknesses that can compromise the integrity and availability
of software systems.Ma et al. [623] developed a tool called VuRLE that automatically locates and fixes
vulnerabilities in source code. Their tool generates repair templates and selectes patches based on the
ASTs of source code. Harer et al. [624] proposed a technique based on Generative Adversarial Networks
(GANs) that generates corrupted data and uses correct-incorrect pairs to train an NMT model. Zhou et

7) Gradle, https://gradle.org/

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

https://gradle.org/

Sci China Inf Sci 60

Table 16 Evaluation Datasets for Deep Learning Based Program Repair Tools

Year Dataset Language Type Size URL

2014 Defect4J Java Runtime Error 835 https://github.com/rjust/defecrrorts4j

2014 Blackbox Java Hybrid Error Over 2,000,000,000 http://www.cs.kent.ac.uk/∼nccb/blackbox

2016 IntroClassJava Java Runtime Error 297 https://github.com/Spirals-Team/IntroClassJava

2017 DroixBench Java Hybrid Error 24 https://droix2017.github.io

2018 Bugs.jar Java Runtime Error 1,158 https://github.com/bugs-dot-jar/bugs-dot-jar

2018 Santos et al. Java Compilation Error 1,715,313 https://archive.org/details/sensibility-saner2018

2019 BugSwarm Java Build Failure 3,091 https://github.com/BugSwarm/bugswarm

2019 Ponta Java Vulnerability 1,068 https://github.com/SAP/project-kb

2022 Vul4J Java Vulnerability 79 https://github.com/tuhh-softsec/vul4j

2015 ManyBugs C Hybrid Error 185 https://repairbenchmarks.cs.umass.edu

2015 IntroClass C Runtime Error 998 https://repairbenchmarks.cs.umass.edu

2016 Prutor C Compilation Error 6,971 https://www.cse.iitk.ac.in/users/karkare/prutor

2017 DBGBENCH C Runtime Error 27 https://dbgbench.github.io

2017 CodeFlaws C Hybrid Error 3,902 https://codeflaws.github.io

2018 TRACER C Compilation Error 16,985 https://github.com/umairzahmed/tracer

2019 TEGCER C Compilation Error 15,579 https://github.com/umairzahmed/tegcer

2020 Big-Vul C/C++ Vulnerability 3,754 https://github.com/ZeoVan/MSR 20 Code vulnerability CSV Dataset

2021 CVEfixes C/C++ Vulnerability 5,495 https://github.com/secureIT-project/CVEfixes

2021 BugsCpp C/C++ Runtime Error 215 https://github.com/Suresoft-GLaDOS/bugscp

2017 QuixBugs Java/Python Runtime Error 40 https://github.com/jkoppel/Quixbugs

2017 HireBuild Build Script Build Failure 175 https://sites.google.com/site/buildfix2017

2019 BugsJS JavaScript Runtime Error 453 https://bugsjs.github.io

2019 Defexts Kotlin/Groovy/etc. Runtime Error 654 https://github.com/ProdigyXable/defexts

2019 Refactory Python Hybrid Error 1783 https://github.com/githubhuyang/refactory

2020 TANDEM Java/C/SQL/etc. Hybrid Error 125 https://github.com/belene/tandem

2022 Ring 6 Languages Hybrid Error 1,200 https://github.com/microsoft/prose-benchmarks

2022 CrossVul 40 Languages Vulnerability 5,131 https://zenodo.org/record/4734050

al. [625] proposed SPVF, which combines ASTs, security properties, and the attention mechanism into
an integrated neural network for both C/C++ and Python programs. Huang et al. [626] attempted to
fix vulnerabilities by leveraging pre-trained large language models. They reported an accuracy rate of
95.47% for single-line errors and 90.06% for multiple-line errors. Chen et al. [627] hypothesized that there
could be a correlation between program repairing and vulnerability fixing. They proposed VRepair, a
transfer learning model designed to solve security vulnerabilities in C programs with limited data. Due
to the increasing number of reported vulnerabilities, Chi et al. [628] developed SeqTrans, an NMT-based
tool that automatically fixed vulnerabilities. Their approach involves learning from historical patches
and contextual features of source code.

12.4 Datasets

The diverse range of programming languages leads to the creation of various types of datasets for program
repair. In light of existing research, there are numerous available datasets that are specifically tailored
for the application of automatic program repair tools.

The evaluation datasets are listed in Table 16. We divide the datasets into three categories according
to the programming languages: in Java, in C/C++, and in other programming languages. We briefly
introduce typical datasets as follows. Prutor [629] is a tutorial system, which helps students solve pro-
gramming problems. Prutor is used in the introductory programming course in IIT Kanpur. Thus,
Prutor collects many pieces of C code, including the buggy code and the correct code.

Blackbox [558] is a project since 2013. It collects data from the BlueJ IDE,8) a tutorial environment
for JAVA learners. After five years of collection, the Blackbox dataset has amassed over two terabytes
of data [630]. In 2018, Santos et al. [557] refined the Blackbox dataset to evaluate their Sensibility
approach. They selected 1,715,312 program pairs of previous and current versions from the Blackbox
dataset, including 57.39% pairs with one syntax error and 14.48% with two syntax errors.

Defects4J [631] is one of the most widely-used benchmark in program repair [589, 609, 632, 633]. The
latest version of Defects4J is a collection of 835 reproducible bugs from 17 open-source Java projects.
Each bug in Defects4J corresponds to a set of test cases that can trigger the bugs. GrowingBugs [634] is

8) BlueJ IDE, https://www.bluej.org/

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

https://github.com/rjust/defecrrorts4j
http://www.cs.kent.ac.uk/~nccb/blackbox
https://github.com/Spirals-Team/IntroClassJava
https://droix2017.github.io
https://github.com/bugs-dot-jar/bugs-dot-jar
https://archive.org/details/sensibility-saner2018
https://github.com/BugSwarm/bugswarm
https://github.com/SAP/project-kb
https://github.com/tuhh-softsec/vul4j
https://repairbenchmarks.cs.umass.edu
https://repairbenchmarks.cs.umass.edu
https://www.cse.iitk.ac.in/users/karkare/prutor
https://dbgbench.github.io
https://codeflaws.github.io
https://github.com/umairzahmed/tracer
https://github.com/umairzahmed/tegcer
https://github.com/ZeoVan/MSR_20_Code_vulnerability_CSV_Dataset
https://github.com/secureIT-project/CVEfixes
https://github.com/Suresoft-GLaDOS/bugscp
https://github.com/jkoppel/Quixbugs
https://sites.google.com/site/buildfix2017
https://bugsjs.github.io
https://github.com/ProdigyXable/defexts
https://github.com/githubhuyang/refactory
https://github.com/belene/tandem
https://github.com/microsoft/prose-benchmarks
https://zenodo.org/record/4734050
https://www.bluej.org/

Sci China Inf Sci 61

highly similar to Defects4J in that bug-irrelevant changes in bug-fixing commits have been excluded from
the patches. The current version of GrowingBugs contains 1,008 real-world bugs collected from open-
source applications. The only difference between GrowingBugs and Defects4J is that the latter excludes
bug-irrelevant changes from bug-fixing commits manually, whereas the former does it automatically by
BugBuilder [635,636].

Vul4J [637] is a dataset of reproducible Java vulnerabilities. All Vulnerabilities in Vul4J correspond
to human patches and Proof-of-Vulnerability (POV) test cases. CrossVul [638] contains vulnerabilities
over 40 programming languages. Each file is corresponding to an ID of Common Vulnerability Exposures
(CVEs) and its source repository. This dataset also contains commit messages, which may serve as
human-written patches.

12.5 Challenges and Opportunities

We present challenges and opportunities in deep learning for program repair in this section.

12.5.1 Challenges

There are several challenges in deep learning for program repair. These challenges reveal that there is
still a long way to go in applying deep learning techniques to automatic program repair.

Training data. Deep learning requires a considerable number of data to train learnable models. In
program repair, labeled data of buggy code and patches are limited. Obtaining high-quality erroneous
and patched code is a severe challenge due to the limited datasets of program repair. Another challenge
is to determine how to use buggy code and patches in model training. A deep learning model can involve
the location of buggy code, its specific type, its context, its syntax, and semantics. The mapping between
buggy code and patched code is a key step in training models in program repair. To date, there is no
theoretical analysis for such a challenge.

Model interpretability. The lack of interpretability for deep learning models makes it difficult to
ensure the correctness of the generated patches. The original goal of program repair is to assist the real-
world developers. Thus, it may be difficult to persuade developers to use deep learning-based program
repair in real-world development.

Self-validation of data. Models of deep learning are built on training data. If the training data
contains errors, these errors may propagate to the generated patches. This hurts the effectiveness of
automatic program repair. Developers are unable to confirm the reliability of patches generated by deep
learning.

12.5.2 Opportunities

Despite the challenges, we identify the following opportunities in the field of deep learning for program
repair.

Data collection and generation. Automatic data collection and generation can benefit program
repair. Researchers can train deep learning models to handle a wide range of programming scenarios
based on high-quality data. Additionally, data generation methods such as program synthesis may be
able to enrich the existing data.

Hybrid approaches. Hybrid approaches that combine deep learning with other existing techniques,
like symbolic reasoning, template-based repair, and rule-based search, have shown promising results in
program repair. These hybrid approaches can improve the effectiveness and efficiency of current program
repair tools by integrating the strength of multiple techniques.

Model optimization. Researchers are able to explore ways to optimize deep learning models for
program repair. Such optimization contains model re-sizing knowledge distillation, neural architecture
search, and so on. Model optimization can help researchers transfer available knowledge from a large and
complex model to new-coming or unknown scenarios.

In conclusion, the opportunities in deep learning for program repair are vast and exciting. Continuous
research and development in this field may lead to more advanced and effective approaches for program
repair.

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 62

Comment

Title

Property

Description

Revision 1.156. ….
if (palette_type == GIMP_WEB_PALETTE ||
 palette_type == GIMP_MONO_PALETTE ||
……………

Manish Singh 2005-03-19 17:48:16 UTC

1. Open a large grayscale image of your choice (e.g. ….
2. Use “Tools/Color Tools/Threshold” to apply some threshold choosen.
3. Now you have a 8bit grayscale image, which acturally consists only of color values “0”
and color values “255”. ….
……………
This slow speed is not acceptable for interactive image processing, and this slowness
is not nessary at all.
……………

Xuan Baldauf 2005-03-18 14:46:31 UTC Description

Bug 170801 - Converting image from grayscale to black&white is

painfully slow

Status:
RESOLVED

FIXED

Product: GIMP

Component: General

Version: 2.2.x

Hardware: Other All

Importance: Normal normal

Assigned

To:
GIMP Bugs

……..

Reported:
2005-03-18 14:46 UTC
by Xuan Baldauf

Modified:
2008-01-15 12:50 UTC

(History)

CC List: 1 users (show)

See Also:

Resolved

Reopen

Verified

Closed

New

Assigned

Figure 6 An example of bug report and its lifecycle.

13 Bug Report Management

Given the intricate nature of software systems, bugs are unavoidable. A previous study shows that a
collection of 606 software failures reported in 2017 has affected approximately 3.7 billion users and caused
financial losses of $1.7 trillion. Therefore, efficiently fixing bugs becomes a fundamental step for software
projects [639].

To fix bugs, most software projects use bug reports to manage bugs. A bug report is used to record
specific details of the bug such as the title, the descriptions (e.g., reproducible steps and stack traces), the
property fields, and the comments, which assist developers in identifying and rectifying buggy code [640].
Figure 6 is an example of a bug report from the Gnome project with bug report ID 1708019). In this
example, Xuan Baldauf issued a bug report titled “converting image from grayscale to black&white is
painfully slow”, and provided detailed information on how to reproduce the bug in the description field
(e.g., “Open a large . . . at all”). Additionally, the reporter specified the property of the bug, such as
the product and component containing the bug. After the submission, other participants contributed
comments in the comment field. The bug report and its associated comments are typically utilized by
software developers to facilitate subsequent software activities.

The general activities to manage bug reports for bug fixing involve six steps [641] (as shown in Figure 6).
Upon the submission of a new bug report, its initial status is labeled as new. Subsequently, the bug report
undergoes manual scrutiny to verify its validity and prevent duplication. Once the bug is confirmed, the
bug report is assigned to a developer. The developer then proceeds to fix the bug and sets its status
to resolved after fixing the bug. For resolved bugs, additional developers conduct code review to verify
the bug resolution. If the bug resolution is verified, developers can close this bug; otherwise, they label
the bug report as reopen, which means that the bug is not successfully fixed. In a typical bug report
management (BRM) cycle, these processes are mainly carried out manually by software developers.

However, with the exponential growth in the number of bug reports submitted to many large-scale
software projects, the size and complexity of bug report repositories increase significantly. It becomes
a laborious task to manually manage bug reports, which consumes a significant amount of time for
developers [642]. For instance, the Eclipse project received a total of 552,334 bug reports in recent 20 years
(from January 2003 to December 2022), averaging around 76 new bug reports daily. Additionally, given
the varied reporting experience of bug reporters [640], not all bug reports provide sufficient information
to assist developers with bug fixing. Developers have to spend tremendous time understanding and
managing these bug reports.

To tackle this challenge, many studies propose to utilize text mining and machine learning (ML) [639,
643,644] to automate BRM. These studies employ classical ML techniques such as Näıve Bayes, Random

9) https://bugzilla.gnome.org/show bug.cgi?id=170801

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

https://bugzilla.gnome.org/show_bug.cgi?id=170801

Sci China Inf Sci 63

Table 17 BRM tasks addressed by deep learning techniques.

Tasks Description Total

1 Bug report refinement Generate a high-quality bug report by enriching/modifying an existing one. 1

2 Duplicate bug detection Detect duplicate or similar bug reports in bug repositories. 8

3 Bug assignment Recommend the most appropriate developers to fix the bug. 5

4 Bug severity/priority prediction Predict the severity/priority of a bug report before fixing. 2

5 Bug fixing time prediction Predict how long it will take to fix the bug. 1

6 Bug report summarization Summarize a bug report into a much shorter form. 6

7 Bug localization Locate relevant source code files or methods that possibly contain the bug
based on the bug report.

16

8 Bug-Commit linking Link bug reports with bug fixing commits or bug inducing commits. 3

Forest, Support Vector Machine, and k -nearest neighbors to automatically detect duplicate bug reports,
triage bug reports, and identify reopened bug reports.

However, the effectiveness of these classical ML techniques is limited [527, 645]. Therefore, recent
studies have utilized deep learning (DL) techniques to enhance the automation of BRM. DL uses its
powerful feature engineering capability to deeply analyze bug reports. The exponential growth number
of bug reports also becomes an important source to effectively train DL models for different classification
and regression tasks. For example, Li et al. [646] introduced an autoencoder architecture that extracts
multiple features from bug reports to generate bug report summary. Fang et al. [647] proposed the use
of Recurrent Neural Network (RNN) to capture sequential information in bug reports and source code
for bug localization. These studies provide compelling evidence of the effectiveness of DL in improving
automated BRM. In this section, we survey the BRM tasks improved by DL techniques and discuss the
challenges and opportunities in this area.

Table 17 summarizes the main BRM tasks addressed by DL techniques, including the task name, the
task description, and the number of related papers for each task. In total, researchers have applied DL
techniques for eight tasks in BRM.

13.1 Bug report refinement

When a bug report is submitted, bug report refinement aims to refine the bug report and improve its
quality for better understanding. For example, we can enrich the bug report with more information
collected from similar bug reports or reformulate the content of the bug report. DL can be used to
improve the refinement process. Zhou et al. [648] reformulated a bug report as a query representation by
leveraging multi-level embeddings through Convolutional Neural Networks (CNNs) with the self-attention
mechanism. The reformulation is used to help developers understand the bug report and retrieve similar
bug reports in the repository.

13.2 Duplicate bug detection

Duplicate bug report detection aims to identify whether a given bug report is a duplicate of an existing
one. The detection not only eliminates redundant data but also provides additional insights into the
reported issues. To automate this task, different types of deep neural networks have been used to train
duplicate bug report detection models, such as simple DNN, CNN, RNN, and LSTM [649–651]. For
example, Deshmukh et al. [652] used CNN and LSTM to retrieve duplicate bug reports, achieving a
precision value of 90% and a recall value of 80%.

The main goal of these DL techniques is to represent the content of bug reports for distinguishing them.
Evaluation demonstrates that DL techniques such as DNN-based 2D embedding and BERT show higher
performance in detecting duplicate bug reports than traditional language models (e.g., n-gram based
model) [653–655]. Despite the promising performance, a recent study [645] analyzed the effectiveness of
state-of-the-art duplicate bug report detection approaches in a realistic setting using industrial datasets.
The results of the study shows that a simple technique already adopted in practice can achieve comparable
results as a recently proposed research tool.

13.3 Bug assignment

A submitted bug report should be assigned to a developer for resolution. This assignment process
is known as bug assignment (or triaging), which can be automated to reduce the manual effort. An

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 64

existing empirical study shows that DL techniques outperform the other traditional ML techniques for
this task [656]. For bug assignment, DL models are employed to extract word sequences, semantic and
syntactic features from bug report textual contents [657]. The features contain discriminative information
that indicates who should fix the bug.

Lee et al. [658] proposed an automatic bug triager using CNN and word embedding. The results
demonstrate benefits in both industrial and open source projects. Mani et al. [659] proposed a novel
bug report representation algorithm using an attention-based deep bidirectional recurrent neural network
(DBRNN-A), which addresses the problem that existing bag-of-words models fail to consider syntacti-
cal and sequential word information in unstructured texts. The empirical results show that DBRNN-A
provides higher rank-10 average accuracy. Liu et al. [660] proposed BT-RL model, which uses deep rein-
forcement learning for bug triaging. It utilizes deep multi-semantic feature fusion for high-quality feature
representation, and an online dynamic matching model employing reinforcement learning to recommend
developers for bug reports.

13.4 Bug severity/priority prediction

The severity/priority of bug reports indicates the importance of fixing a bug, which is often manually
decided by developers. Bug severity/priority prediction aims to automatically assign the severity/priority
property of a bug report based on the knowledge of historical bug reports. Han et al. [661] used word
embeddings and a one-layer shallow CNN to automatically capture discriminative word and sentence
features in bug report descriptions for predicting the severity. Gomes et al [662] conducted a survey on
bug severity/priority prediction, which also confirms the effectiveness of DL techniques on this task.

13.5 Bug fixing time prediction

This task predicts the time to be taken to fix a bug, which helps software team better allocate the work
of developers. Previously, many popular ML methods such as KNN and Decision trees have been used to
predict the fixing time of bug reports. In recent years, DL has also been employed. For example, Noyori
et al. [663] adopted a CNN and gradient-based visualization approach for extracting bug report features
related to bug fixing time from comments of bug reports. These features can significantly improve the
effectiveness of bug fixing time prediction models.

13.6 Bug report summarization

The common practice for software developers to fix newly reported bugs is to read the bug report and
similar historical bug reports. Statistics show that nearly 600 sentences have to be read on average if
a developer refers to only 10 historical bug reports during bug fixing [646]. Bug report summarization
automatically identifies important sentences in a bug report or directly generates a short, high-level
summary of the bug report [664]. Regarding DL techniques, Huang et al. [28] proposed a CNN-based
approach to analyze the intention of each sentence in bug report for the ease of reading the content. Li
et al. [646] and Liu et al. [665] proposed auto-encoder networks with different structures for informative
sentence extraction in bug reports. In recent studies, DL based language models are also employed to
automatically generate titles of bug reports [666,667].

13.7 Bug localization

Bug localization is the main BRM task facilitated by DL techniques, where 16 related papers are found.
For this task, DL techniques are used to bridge the gap between the natural language in bug reports and
the source code [668, 669]. For example, DL networks such as CNNs can be used to extract semantic
correlations between bug reports and source files. Then, these features are merged and passed to a
classification layer to compute the relevancy scores between bug reports and source files [670]. The
relevancy scores can be combined with the scores computed from other ML or information retrieval
techniques [671–673] (such as learning to rank [674]) to better associate source code with a bug report.

In recent years, advanced DL techniques such as BERT [527], adversarial transfer learning [675], and
attention mechanism [676] have been employed to improve the localization effectiveness. Using these
powerful DL techniques, a bug report can be located to the source code on different levels (e.g., file
level [677], component level [678], and method level [526]). These techniques also enable both within-
project bug localization and cross-project bug localization [675,679].

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 65

Table 18 Datasets used for BRM tasks.

Tasks <1000 1000–10000 10001–30000 30001-100000 >100000

1 Bug report refinement * * * * 1

2 Duplicate bug detection * * * * 5

3 Bug assignment * * * 1 2

4 Bug severity/priority prediction * * * 1 *

5 Bug fixing time prediction * * * 1 *

6 Bug report summarization 2 * * 1 1

7 Bug localization 1 3 10 * 1

8 Bug-Commit linking 1 * 2 * *

13.8 Bug-Commit linking

Bug-commit linking associates bug reports with bug fixing commits or bug inducing commits. Conse-
quently, developers can better understand which commit fixes the bug and why/how/when the bug is
introduced [639]. A variant of this task is to link bug reports with reviews or comments in software
engineering forums (e.g., APP reviews) [680]. For this task, DL techniques (e.g., word embedding and
RNN) learn the semantic representation of natural language descriptions and code in bug reports and
commits, as well as the semantic correlation between bug reports and commits [681,682].

13.9 Datasets

The type of datasets used for BRM tasks is determined by the nature of each BRM task. For the majority
of BRM tasks, the main datasets are the bug reports (also called issue reports). Such BRM tasks include
bug report refinement, duplicate bug detection, bug assignment, bug severity/priority prediction, bug
fixing time prediction, and bug report summarization. Regarding bug localization and bug-commit
linking, datasets require bug reports, source code, and commit messages for analysis. Existing studies
evaluate their DL techniques using datasets from different software repositories, such as Open Office,
Eclipse, Mozilla, and Net Beans [652,653,683,684]. Since many software projects nowadays are managed
by distributed collaboration platforms such as GitHub, bug reports from GitHub are also important
dataset sources for BRM tasks, such as TensorFlow, Docker, Bootstrap, and VS Code [28].

Table 18 shows the sizes of datasets used for different BRM tasks. The number in each cell represents
the number of datasets with the certain size used for a BRM task. All BRM tasks have datasets with
more than 10,000 BRM-related items (e.g., bug reports). For five out of eight BRM tasks, they have
constructed large datasets with more than 100,000 BRM-related items. The large datasets for BRM tasks
not only improve the reliability of the evaluation, but also facilitate the training of DL techniques.

13.10 Challenges and opportunity

Based on the preceding analysis of deep learning-based BRM, we present the challenges and opportunities
for future research.

13.10.1 Challenges

• Computation cost. Computation cost of deep learning is one of the major concerns in BRM. Deep
learning works well for many tasks but generally costs a large amount of computation resources.
Sometimes the training time lasts for hundreds of hours of CPU/GPU time, especially for complex
network architectures. The less computation cost is important for using DL in real BRM scenario
in industry, because the long computation time leads to power consumption and heat dissipation
issues, which increase the total financial cost of software companies [685].

• Training datasets. The size of a training set is important for DNNs. Biswas et al. [686] found
that there are sometimes no performance increases for domain-specific training of DL, due to the
small-scale training set. Nizamani et al. [687] also observed a trend of performance improvement
for deep learning when the training set size is increased. For deep learning applications in BRM,
small training sets often lead performance decline and over-fitting.

• Interpretability. The interpretability is important in BRM. Results provided by machine learning
algorithms are sometimes difficult to be understood. DL techniques are even worse due to the

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 66

complex network architectures. Therefor, more interpretable DL techniques are important to help
developers get trustworthy prediction results.

13.10.2 Opportunities

• DL acceleration in the BRM context. SE studies accelerate the network training with optimization
strategies in AI, e.g., batch gradient descent and RMSprop. For a given BRM task, some studies
select faster neural networks as substitutes for the slow ones. For example, CBOW is a faster
model than Skip-gram in Word2Vec. Li et al. [688] compared the two models and used CBOW for
their task, as the two models achieve similar performance. Meanwhile, existing studies also reduce
the computation cost by using the distributed model training [689] and dynamic GPU memory
manager [690].

• BRM data enrichment. The challenge of training datasets can be alleviated as the exponen-
tial growth in the number of bug reports. BRM studies also adopt DL techniques such as fine-
tuning [654] and transfer learning [675] to address this problem. In addition, we can automatically
generate (relatively low-quality) artificial data to enlarge the training set. Typically, data genera-
tion is treated in a case-by-case manner. For instance, Morgan et al. [691] used APP screenshots
and the labeled GUI-component names in screenshots to train DNNs for GUI-component classifica-
tion. They synthesized APP screenshots by placing GUI-components of specified types on a single
screen with randomized sizes and values. They also performed color perturbation on the images to
further enlarge the training set.

• Interpretable DL techniques for BRM tasks. Existing studies try to interpret the prediction results
of DL by visualization, including t-SNE and heat map visualizations. The t-SNE (t-distributed
Stochastic Neighbor Embedding) technique projects high-dimensional vectors into two-dimensional
spaces. It is useful to understand the embedding (vectors) generated by DNNs. With t-SNE, we
can understand the semantically related APIs and SE terms [692] calculated by deep learning. A
heat map is usually used to visualize network parameters. By visualizing parameters of a layer, we
can understand which part of information on which the network focuses more. A heat map assumes
the more important (in deeper color) a region is, the more weight the network assigns to features in
that area. SE studies use heat maps to visualize the important part in SE images for classification
and the attention of RNN [693].

14 Developer Collaboration

Software development usually relies on highly collaborative efforts among developers and is widely known
as a type of social-technical activity. Hence effective collaboration among software developers is one of
the most important factors that greatly benefit productive software development. Brooks highlights the
collaboration cost in software development in his famous book, The Mythical Man-Month [694]. On
one hand, for large-scale software projects inside an organization, hundreds or thousands of developers
could be involved, in which developers may not know each other well, and it is a great challenge to
establish effective collaboration among developers. On the other hand, open source and crowdsourcing
projects are becoming increasingly prevalent software development paradigms, and millions of developers
are loosely organized in Internet-based development platforms, where both the development tasks and
developers are characterized by variety and scale, and how to support collaborative development in such
open environments is another big challenge. While developer collaboration may involve many aspects,
development tasks are the pivotal points. Thus, the core issues for developer collaboration include: (1)
understanding developers, and (2) assigning a task to one or multiple proper developers. In this regard,
thanks to the availability of the large volume of software development data, machine learning (especially
deep learning) has been employed to analyze the data and provide intelligent support for facilitating
developer collaboration. In particular, we survey developer collaboration from the following three angles:
developer expertise profiling, intelligent task assignment, and development team forming.

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 67

14.1 Developer Expertise Profiling

Developer expertise profiling mainly aims at realizing certain forms of representation of the skills that a
developer has mastered, which is the basis for collaborative development. Profiling developer expertise
has received much attention in the software engineering community [695–699]. The typical approach is to
mine developers’ past experience data to measure their expertise with machine learning and data mining
techniques.

We first review the research efforts with traditional machine learning techniques. For instance, [695]
presents an approach, Expertise Browser, to measure expertise of developers with the data in change
management systems, and [698] studies how developers learn their expertise by quantifying the develop-
ment fluency. [699–701] evaluate developers by graph-based algorithms. [702] present a conceptual theory
of software development expertise for programming mainly by a large-scale survey of real-world software
developers. [703] evaluate developers’ contributions by development values consisting of the effect of code
reuse and the impact on development. Expertise profiling is also used for modeling developers in open
source software community. For example, Venkataramani et al. [704] captured the expertise of developers
by mining their activities from the open source code repositories. Saxena et al. [705] annotated GitHub
code with tags in Stack Overflow and then created a detailed technology skill profile of a developer
based on code repository contributions of the developer. Considering single-community data could be
insufficient for accurately characterizing developers, several techniques have been proposed to connect
users in different software communities [706–712]. In [709], the authors conducted an empirical study
of user interests across GitHub and Stack Overflow and they found that developers do share common
interests in the two communities. Huang et al. [710] proposed CPDScorer to model the programming
ability of developers across CQA sites and OSS communities. They first analyzed the answers posted
in CQA and the projects submitted in OSS to score developer expertise in the two communities, re-
spectively. They then computed the final expertise by summing up the two scores. However, they did
not consider the interactions among developers, which have implications for evaluating the expertise of
developers. Furthermore, most approaches to developer expertise profiling ignore the fact that developer
expertise evolves over time due to learning or forgetting. To fill this gap, Yan et al. [711] and Song et
al. [713] proposed heterogeneous information network-based approaches to profiling developer expertise
with GitHub and Stack Overflow data, where there are four types of nodes including developers, skills,
questions, and projects, and nine types of edges in the network. As a result, the problem of profiling de-
velopers is formulated as estimating the distance of developer nodes and skill nodes. That work combines
the historical contributions of developers, the dynamics of expertise due to forgetting, and collaborations
among developers, which is particularly featured by incorporating the collaboration relationships into the
estimation of developers’ expertise. Montandon et al. [712] employed data from social coding platforms
(i.e., Stack Overflow and GitHub), built three different machine-learning models to identify the technical
roles of open source developers such as backend, frontend, full-stack, etc, and they simply leveraged the
data from Stack Overflow to build a ground truth for evaluating the performance of their approach.

Apart from traditional machine learning, deep learning techniques are also introduced in profiling
developer expertise as vectors. The vectors can be utilized for predicting or recommending downstream
tasks to developers. Dey et al. [714] proposed a deep neural network based approach to generating
vectorized representation of software developers based on the APIs they have used. Specifically, the
authors collected the open source data with WoC (World of Code) [715], extracted the mappings of
projects, developers and the APIs, and then used Doc2Vec [236] to obtain the vectors representing APIs,
developers and projects. Similarly, Dakhel et al. [716] also used Doc2Vec to generate vector embeddings
of developers, but they incorporated more data including the textual data of repositories and issues
beyond APIs. Javeed et al. [717] proposed to use LSTM and convolutional neural networks to train deep
learning models to classify whether a developer is an expert or a novice according to six attributes of
source code, including security, reliability, complexity, lines of code, maintainability and duplication.

14.2 Intelligent Task Assignment

Given a software development task, one important issue is how to find appropriate developers to handle
the task, which is also known as development task assignment. In the following, we summarize how
machine learning and deep learning are used to support development task assignments in various scenarios
including crowdsourcing software development, open source development, bug triage etc.

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 68

14.2.1 Crowdsourcing developer recommendation

Crowdsourcing software development usually adopts the open-call mode to solicit workers (i.e., developers)
for various tasks published online by requesters. Developers hope to find appropriate tasks by considering
the task factors such as reward, difficulty, and needed efforts while requesters need to find capable
developers to complete the tasks with guaranteed quality. As a result, recommending suitable developers
to a task, or vice versa, becomes an important research topic in crowdsourcing software development.

As prior studies often overlook the skill improvement of developers over time, Wang et al. [718] pro-
posed a new technique for crowdsourcing developer recommendations. After conducting an empirical
study of 74 developers on Topcoder and re-calculating developers’ scores, they found that skill improve-
ment of developers fits well with the negative exponential learning curve. Based on the learning curve,
a skill prediction technique is designed and a skill improvement-aware framework for recommending de-
velopers is proposed. Zhang et al. [719] proposed a meta-learning-based policy model to address the
challenge of identifying developers who are most likely to win a given task in crowdsourcing software
development. This model firstly filters out developers unlikely to participate or submit to a given task,
then recommends the top k developers with the highest possibility of winning. Yu et al. [720] proposed
a new deep model, which is a cross-domain developer recommendation algorithm using feature matching
based on collaborative filtering, for T-shaped expert finding. Their recommendation model leverages the
data from software crowdsourcing platforms (i.e., ZhuBaJie and Joint Force), solves the problem of data
sparsity, and finally improves the recommendation performance to some extent. Wang et al. [721] pre-
sented PTRec, a context-aware task recommendation technique, capturing in-process progress-oriented
information and crowdworkers’ traits through a testing context model. Using random forest, it dynam-
ically recommends tasks aligned with worker skills and interests. The evaluation shows its excellence in
precision and recall, saving efforts and enhancing bug detection. Furthermore, Wang et al. [722] presented
iRec2.0, which integrates dynamic testing context modeling, learning-based ranking, and multi-objective
optimization for crowdworker recommendations in crowdtesting. It aims to detect bugs earlier, shorten
non-yielding windows, and alleviate recommendation unfairness, demonstrating the potential to improve
cost-effectiveness.

14.2.2 Reviewer recommendation

Code review is one of the important tasks for ensuring code quality, which relies on professional developers,
known as reviewers, to identify defects by reading source code. Thus finding appropriate reviewers is
a core issue for achieving effective code reviews. To address this issue, researchers have conducted
extensive studies on recommending reviewers for code review tasks, especially in the context of open
source development.

Ying et al. [723] proposed a reviewer recommendation approach (EARec) for a given pull request,
considering developer expertise and authority simultaneously. Jiang et al. [724] provided an approach to
recommending developers to comment a PullRequest in social-coding platforms like GitHub. Zhang et
al. [725] presented CORAL, a reviewer recommendation technique using a socio-technical graph and a
graph convolutional neural network. Trained on 332 Microsoft repositories, CORAL identifies qualified
reviewers missed by traditional systems, excelling in large projects, while traditional systems perform
better in smaller ones. Rebai et al. [726] framed code reviewer recommendation as a multi-objective search
problem, balancing expertise, availability, and collaboration history. Validation on 9 open-source projects
confirms its superiority over existing approaches. Zanjan et al. [727] introduced cHRev, an approach
for automatic reviewer recommendation based on historical contributions of reviewers in their previous
reviews. Due to leveraging specific previous review information, cHRev outperforms existing approaches
on three open-source systems and a Microsoft code base. Hannebauer et al. [728] empirically compared
six modification expertise-based algorithms and two reviews expertise-based algorithms on four FLOSS
projects. The study concludes that review expertise-based algorithms, particularly the Weighted Review
Count (WRC), are more effective. Rong et al. [729] introduced HGRec, a recommendation system utilizing
hypergraph techniques to model complex relationships involving multiple reviewers per pull-request in
code review. Evaluated on 12 OSS projects, HGRec demonstrates superior accuracy, emphasizing the
potential of hypergraphs in this field. Kovalenko et al. [730] evaluated a reviewer recommendation system
in a company setting, covering over 21,000 code reviews. Despite the relevance of recommendations, it
identifies no evidence of influence on user choices, highlighting the need for more user-centric design
and evaluation in reviewer recommendation tools. Ahasanuzzaman et al. [731] proposed KUREC, a code

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 69

reviewer recommender utilizing Java programming language knowledge units (KUs) to generate developer
expertise profiles and select reviewers. Evaluated against baselines, KUREC is found to be equally
effective but more stable. Besides, combining KUREC with baselines further enhances performance.
Gonçalves et al. [732] identified 27 competencies vital for code review through expert validation and
ranked them using a survey of 105 reviewers. The findings reveal that technical skills are essential and
commonly mastered, but improvements are needed in clear communication and constructive feedback.

14.2.3 Other tasks

Besides the aforementioned tasks, there are also a series of other development tasks that benefit from
machine learning and deep learning technologies, e.g. bug assignment (Section 13.3), question answering
tasks in online Q&A sites, and various development tasks for open source contributors.

Huang et al. [733] proposed an approach to recommending appropriate answerers for questions posted to
Q&A sites. Specifically, they leveraged graph attention networks to represent the interactive information
between candidate answerers, and an LDA topic model to capture the text information. It was verified by
experiments that the approach outperforms the state-of-the-art techniques of that time. Jin et al. [734]
proposed CODER, a graph-based code recommendation framework for OSS developers, that models user-
code and user-project interactions via a heterogeneous graph to predict developers’ future contributions.
CODER has shown superior performance in various experimental settings, including intra-project and
cross-project recommendations. Xiao et al. [735] introduced RecGFI, an approach for recommending
“Good First Issues” to newcomers in open-source projects. Utilizing features from content, background,
and dynamics. Employing an XGBoost classifier, RecGFI achieves up to 0.853 AUC in evaluation,
demonstrating superiority over alternative models.

Santos [736] proposed an automatic open issue labeling strategy to assist OSS contributors in selecting
suitable tasks and helping OSS communities attract and retain more contributors. The technique uses
API-domain tags to label issues and relies on qualitative studies to formulate recommendation strategies
and quantitative investigations to analyze the relevance between API-domain labels and contributors. The
results show that the predicted labels have an average precision of 75.5%, demonstrating the superiority
of the technique. Costa et al. [737] presented TIPMerge, an approach for recommending participants
for collaborative merge sessions within large development projects with multiple branches. TIPMerge
builds a ranked list of developers appropriate to collaborate by considering their changes in previous
history, branches and dependencies, and recommends developers with complementary knowledge. The
approach demonstrates a mean normalized improvement of 49.5% for joint knowledge coverage compared
to selecting the top developers.

14.3 Development Team Formation

Complex development tasks often ask for a team of developers. Thus how to find a cohort of developers
who can collaboratively handle a complex task is an important issue in software development.

In order to address the complexity of finding collaborators with shared interests in large open-source
software, Constantino et al. [738] proposed a visual and interactive web application tool named CoopFinder.
They further presented and evaluated two collaborator recommendation strategies based on co-changed
files [739]. The strategies utilize TF-IDF scheme to estimate the importance of files modified by developers
and measure developers’ similarity using the Cosine metric. Through an extensive survey of 102 real-
world developers, the strategies show up to an 81% acceptance rate, enhancing collaboration efficiency
among developers. Surian et al. [740] introduced a technique to find compatible collaboration among
developers. They first created a collaboration network using information of developers and projects from
Sourceforge.Net, then recommended collaborators for developers based on their programming skills and
past projects through a random walk with restart procedures. Canfora et al. [741] introduced Yoda, a
technique for recommending mentors to newcomers in software projects. By mining data from mailing
lists and versioning systems, developers with experience meanwhile actively interacting with newcomers
are selected as their mentors. Evaluation on five open-source projects and surveys with developers shows
the potential usefulness of Yoda in supporting newcomers in a team and indicates that top committers
are not always the best mentors. Ye et al. [742] introduced a personalized teammate recommendation
approach for crowdsourcing developers. Through an empirical study on Kaggle, three factors influencing
developers’ teammate preferences are identified and a linear programming-based technique is proposed to

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 70

compute developers’ teammate preferences. Finally, a recommendation approach with an approximation
algorithm to maximize collaboration willingness is designed.

14.4 Datasets

Here, we present some commonly used datasets in the three main kinds of research efforts toward intel-
ligent developer collaboration. For developer expertise profiling, data primarily originate from collabo-
rative software development platforms such as GitHub, encompassing version control data from various
open-source projects with diverse developer information [743] [744] [716]. For intelligent task assignment,
datasets are sourced from crowdsourcing platforms like Topcoder and Baidu CrowdTest, where historical
data contain developer information and the corresponding task categories [718] [721]. In the case of
development team formation, datasets are predominantly obtained from platforms like SourceForge and
Kaggle, showcasing richer collaboration patterns among developers [740] [742]. These datasets provide
abundant information for studying developer behavior, intelligent task assignment, and team formation.

• Developer expertise profiling. The World of Code (WoC) dataset [743] is a versioned and
expansive repository of version control data from Free/Libre and Open Source Software (FLOSS)
projects using Git. The dataset, collected in March 2020, contains 7.9 billion blobs, 2 billion
commits, 8.3 billion trees, 17.3 million tags, 123 million distinct repositories, and 42 million unique
author IDs. WoC supports various research tasks, including developer expertise profiling. Using
the WoC dataset, Fry et al. [744] proposed a technique to identify all author IDs belonging to a
single developer in the entire dataset, revealing aliases. Using machine learning, Fry et al. processed
around 38 million author IDs, identifying 14.8 million with aliases linked to 5.4 million developers.
This dataset enhanced models of developer behavior at the global open-source software ecosystem
level, facilitating rapid resolution of new author IDs. Meanwhile, Dakhel et al. [716] collected a
dataset to determine the domain expertise of developers using information from GitHub. Their
data collection process involved three main types of information: repositories that developers have
contributed to, issue-resolving history, and API calls involved in a commit. This dataset contained
information about 1,272 developers with expertise labels in five job roles. The dataset consisted
of textual information from 58,000 repositories, issue-resolving history from 60,000 issues, and API
calls from 21 million commits across different GitHub repositories. The dataset aimed to provide
comprehensive insights into developers’ expertise by considering their contributions to repositories,
issue resolution history, and API usage in commits across diverse projects on GitHub.

• Intelligent task assignment. Crowdsourcing platforms provide the feasibility of data collection
for intelligent task assignments. For instance, Topcoder is a competition-based crowdsourcing
software development platform. Topcoder offers various types of tasks, such as “Test Suites,”
“Assembly,” and “Bug Hunt,” each representing a category of challenges. Challenges are instances
of task types, and developers choose whether to participate in these challenges. In this respect,
Wang et al. [718] collected a dataset from Topcoder. Their dataset involved 32,565 challenges,
7,620 developers, and 59,230 submissions spanning from 2006 to 2016. The dataset focused on 100
developers with over 100 submissions, containing the evolution of the skills of each developer. After
filtering out submissions with a final score of 0 (indicating unfinished submissions), there were 74
developers left in the dataset. There has also been a lot of work on dataset building using other
crowdsourcing platforms. For example, Wang et al. [721] collected a dataset from Baidu CrowdTest.
The dataset involved 2,404 crowdworkers and comprised 80,200 submitted reports. For each testing
task, comprehensive information was gathered, including task-related details and all submitted test
reports with associated information, such as submitter and device.The dataset serves as a valuable
resource for analyzing crowdtesting dynamics and outcomes.

• Development team formation. Work related to development team formation is often obtained
from open-source software development platforms with collaborative and social nature, such as
SourceForge and Kaggle. For example, Surian et al. [740] collected a dataset by analyzing the
SourceForge database, which contained information about projects, project categories, and pro-
gramming languages. There were 209,009 developers associated with 151,776 projects. The dataset
included details such as 354 project categories and information about the usage of 90 different pro-
gramming languages within the projects. Meanwhile, Ye et al. [742] collected a dataset by crawling

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 71

data from Kaggle, including details from 275 competitions and 74,354 developers. The data spanned
from April 2010 to January 2018 and encompassed 191,300 submissions. Additionally, developers’
social data from Kaggle’s communities were crawled, enhancing the dataset with information about
interactions and discussions among developers.

14.5 Challenges and Opportunities

In general, software is becoming more complex as the major enabling force for the infrastructure of var-
ious information systems. Consequently, more developers participate in software projects, and software
development is increasingly exhibiting a social-technical characteristic, which requires more effective col-
laboration among developers. Thus, more research efforts are needed to produce new theories, techniques,
and tools to further improve collaborative development. To that end, we summarize the challenges and
opportunities in this research area.

14.5.1 Challenges

The use of deep learning to improve developer collaboration faces the following research challenges in
terms of collaborative tasks, software development data, and evaluation benchmarks.

• Complex collaboration among multiple developers. Existing research mainly considers the
collaboration between two developers. In other words, one developer posts a task requirement, and
another developer is required to fulfill the task. However, at higher levels (e.g., from a project’s
perspective), we must consider the collaboration among a group of developers, where global collab-
oration effects and constraints should be of greater concern.

• Continuously growing data size and heterogeneity. On the one hand, developers generate
more data, which are often distributed across various platforms, including personal IDEs, propri-
etary enterprise environments, open-source platforms (e.g., GitHub), and public forums (e.g., Stack
Overflow). On the other hand, software development data are essentially heterogeneous, involving
natural language data, source code, AI models, and even graphical data. Dealing with highly dis-
persed, heterogeneous, and large-scale development data is a great challenge for using deep learning
to achieve more effective and efficient collaborative development.

• Lack of benchmarks for effective evaluation. As the effectiveness of developer collaboration
usually cannot be observed in a short time, evaluating a newly proposed technique is difficult.
Therefore, having benchmark datasets on one or multiple collaborative development tasks is highly
desirable.

14.5.2 Opportunities

Although deep learning has shown promising results in improving developer collaboration, there are still
abundant research opportunities for advancing this direction.

• Application of deep learning to a wider spectrum of collaborative development tasks. As collabo-
rative activities are pervasive in software development processes, deep learning can be introduced
to deal with more tasks other than those in existing studies.

• Incorporating advanced deep learning technologies. Although deep learning has developed dra-
matically for nearly two decades, new technologies are still being put forward continually, such as
graph neural networks and large language models. Applying these technologies to handle large-scale
heterogeneous development data embraces more opportunities for intelligent collaborative develop-
ment.

• Novel collaborative development activities enabled by deep learning. Large language models like
ChatGPT are becoming more powerful in handling development tasks, such as code generation
and program repair. It is possible to see novel collaborative development activities among human
developers and deep learning-based AI models.

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 72

15 Conclusion

In this paper, we present the first task-oriented survey on deep learning-based software engineering. Our
survey focuses on twelve of the important tasks in software development and maintenance: requirements
engineering, code generation, code search, code summarization, software refactoring, code clone detection,
software defect prediction, bug finding, fault localization, program repair, bug report management, and
developer collaboration. For each of the selected tasks, we summarize the most recent advances concerning
the application of deep learning for the given task, as well as relevant challenges and future opportunities.
On the basis of the surveyed deep learning-based subareas of software engineering, we make the following
observations:

• Widespread applications and impressive results. Deep learning techniques have been widely
applied across various subareas of software engineering and have achieved impressive results. First,
deep learning techniques typically improve the performance of most tasks. For example, deep
learning-based code clone detection always achieves higher recall and better precision than the best
classical approaches. An existing empirical study also shows that deep learning techniques outper-
form other traditional machine learning techniques for bug assignments. Moreover, in requirements
engineering, most studies report precision and recall exceeding 80%, and the F1 score is often above
75%. Second, the powerful feature engineering capability of deep learning enables the capture of
semantic information. Typically, some tasks (e.g., software defect prediction and software refactor-
ing) involve complex feature engineering. Deep learning helps release researchers and practitioners
from tedious feature engineering. Third, deep learning can further contribute to the automation of
software engineering processes. Traditional techniques may rely on complex preprocessing and/or
postprocessing techniques to automate the whole process. Deep learning can turn the whole process
in an end-to-end manner. For example, deep learning techniques can directly deal with bug reports
and help automate the process of bug report management.

• Challenges in high-quality training data acquisition. The primary challenge faced by most
subareas of software engineering is obtaining high-quality training data. First, the sizes of datasets
are often limited. For example, publicly accessible data for requirements typically are small in
volume and lack some details, making it difficult to train effective deep learning models. Second,
the quality of datasets is often unguaranteed. For example, in code generation, it is unclear whether
datasets contain vulnerable code snippets that may result in unsafe codes. Third, some existing
datasets are the results of specially designed data production activities and may not well align with
real-world scenarios. Although this can lead to strong model performance during evaluation, the
performance may not be effectively transferred into practical use.

• Interpretability challenge. The interpretability of deep learning models is also a common chal-
lenge across various subareas of software engineering. First, the lack of interpretability for deep
learning models makes ensuring correctness difficult. For example, ensuring whether generated
patches are correct is difficult. Second, deep learning models are known for their “black-box” na-
ture, making it challenging for developers to understand their rationale. Therefore, it is hard for
developers to work with deep learning models.

• Generalization across languages. Developing deep learning models that generalize well across
different languages is a considerable challenge. Different programming languages have their own
syntax and semantics, making it difficult to develop a universal model that performs well across
diverse languages. Therefore, the current practice is to deal with each programming language
individually. For example, for different programming languages, researchers often need to train
different models for the same code summarization task. Furthermore, to incorporate additional
code structure information in deep learning models, researchers must parse code snippets with their
corresponding parsers, thus resulting in significant differences for different programming languages.

Our survey demonstrates that deep learning-based software engineering has achieved significant ad-
vances recently and has the potential for further improvement. However, some critical challenges should
be resolved before deep-learning based software engineering can reach its maximal potential. We believe
that future research should focus on resolving these challenges.

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 73

Acknowledgements We thank the following persons for their prior contributions to the manuscript preparation (in

alphabetical order): Yuze Guo (Beihang University), Ruiqi Hong (Beihang University), Mingwei Liu (Fudan University),

Xiaofan Liu (Wuhan University), Di Wu (Beihang University), Hongjun Yang (Beihang University), Yanming Yang (Zhejiang

University), Binquan Zhang (Beihang University), and Zhuang Zhao (Wuhan University).

References

1 Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with neural networks. science,

313(5786):504–507, 2006.

2 Li Liu, Wanli Ouyang, Xiaogang Wang, Paul Fieguth, Jie Chen, Xinwang Liu, and Matti Pietikäinen. Deep learning for

generic object detection: A survey. International Journal of Computer Vision, 128:261–318, 2020.

3 Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm for deep belief nets. Neural Computation,

18(7):1527–1554, 2006.

4 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks.

Communications of the ACM, 60(6):84–90, 2017.

5 Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document recognition.

Proceedings of the IEEE, 86(11):2278–2324, 1998.

6 Jeffrey L Elman. Finding structure in time. Cognitive Science, 14(2):179–211, 1990.

7 Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735–1780, 1997.

8 Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural networks. IEEE Transactions on Signal Processing,

45(11):2673–2681, 1997.

9 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia

Polosukhin. Attention is all you need. Advances in neural information processing systems, 30, 2017.

10 Yanming Yang, Xin Xia, David Lo, and John Grundy. A survey on deep learning for software engineering. ACM Computing

Surveys (CSUR), 54(10s):1–73, 2022.

11 Giang Nguyen, Stefan Dlugolinsky, Martin Bobák, Viet Tran, Álvaro López Garćıa, Ignacio Heredia, Peter Maĺık, and

Ladislav Hluchỳ. Machine learning and deep learning frameworks and libraries for large-scale data mining: a survey.

Artificial Intelligence Review, 52:77–124, 2019.

12 Jinjiang Wang, Yulin Ma, Laibin Zhang, Robert X Gao, and Dazhong Wu. Deep learning for smart manufacturing: Methods

and applications. Journal of Manufacturing Systems, 48:144–156, 2018.

13 Dinggang Shen, Guorong Wu, and Heung-Il Suk. Deep learning in medical image analysis. Annual Review of Biomedical

Engineering, 19:221–248, 2017.

14 Daniel S Berman, Anna L Buczak, Jeffrey S Chavis, and Cherita L Corbett. A survey of deep learning methods for cyber

security. Information, 10(4):122, 2019.

15 Triet HM Le, Hao Chen, and Muhammad Ali Babar. Deep learning for source code modeling and generation: Models,

applications, and challenges. ACM Computing Surveys (CSUR), 53(3):1–38, 2020.

16 Alexey Svyatkovskiy, Ying Zhao, Shengyu Fu, and Neel Sundaresan. Pythia: Ai-assisted code completion system. In

Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2019,

pages 2727–2735, 2019.

17 Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. Summarizing source code using a neural attention

model. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, ACL 2016, August

7-12, 2016, Berlin, Germany, Volume 1: Long Papers. The Association for Computer Linguistics, 2016.

18 Mauricio Aniche, Erick Maziero, Rafael Durelli, and Vinicius HS Durelli. The effectiveness of supervised machine learning

algorithms in predicting software refactoring. IEEE Transactions on Software Engineering, 48(4):1432–1450, 2020.

19 Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. Deep code search. In Michel Chaudron, Ivica Crnkovic, Marsha

Chechik, and Mark Harman, editors, Proceedings of the 40th International Conference on Software Engineering, ICSE

2018, Gothenburg, Sweden, May 27 - June 03, 2018, pages 933–944. ACM, 2018.

20 Mohammad Wardat, Wei Le, and Hridesh Rajan. Deeplocalize: Fault localization for deep neural networks. In Proceedings

of the IEEE/ACM 43rd International Conference on Software Engineering, ICSE 2021, pages 251–262. IEEE, 2021.

21 Yi Li, Shaohua Wang, and Tien N. Nguyen. Dlfix: context-based code transformation learning for automated program

repair. In ICSE ’20: 42nd International Conference on Software Engineering, Seoul, South Korea, 27 June - 19 July,

2020, pages 602–614. ACM, 2020.

22 Deqing Zou, Sujuan Wang, Shouhuai Xu, Zhen Li, and Hai Jin. µvuldeepecker: A deep learning-based system for multiclass

vulnerability detection. IEEE Transactions on Dependable and Secure Computing, 18(5):2224–2236, 2019.

23 Nargiz Humbatova, Gunel Jahangirova, and Paolo Tonella. Deepcrime: mutation testing of deep learning systems based

on real faults. In Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis,

ISSTA 2021, pages 67–78, 2021.

24 Cody Watson, Nathan Cooper, David Nader Palacio, Kevin Moran, and Denys Poshyvanyk. A systematic literature review

on the use of deep learning in software engineering research. ACM Transactions on Software Engineering and Methodology

(TOSEM), 31(2):1–58, 2022.

25 Changan Niu, Chuanyi Li, Bin Luo, and Vincent Ng. Deep learning meets software engineering: A survey on pre-trained

models of source code. arXiv preprint arXiv:2205.11739, 2022.

26 Quanjun Zhang, Chunrong Fang, Yang Xie, Yaxin Zhang, Yun Yang, Weisong Sun, Shengcheng Yu, and Zhenyu Chen. A

survey on large language models for software engineering. arXiv preprint arXiv:2312.15223, 2023.

27 Zhi Jin. Environment Modeling-Based Requirements Engineering for Software Intensive Systems. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 1st edition, 2017.

28 Qiao Huang, Xin Xia, David Lo, and Gail C. Murphy. Automating intention mining. IEEE Transactions on Software

Engineering, 46(10):1098–1119, 2020.

29 Florian Pudlitz, Florian Brokhausen, and Andreas Vogelsang. Extraction of system states from natural language require-

ments. In 2019 IEEE 27th International Requirements Engineering Conference (RE), pages 211–222, 2019.

30 Mingyang Li, Lin Shi, Ye Yang, and Qing Wang. A deep multitask learning approach for requirements discovery and

annotation from open forum. In Proceedings of the 35th IEEE/ACM International Conference on Automated Software

Engineering, ASE ’20, page 336–348, New York, NY, USA, 2021. Association for Computing Machinery.

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 74

31 Hui Guo and Munindar P. Singh. Caspar: Extracting and synthesizing user stories of problems from app reviews. In

Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering, ICSE ’20, page 628–640, New

York, NY, USA, 2020. Association for Computing Machinery.

32 Rohan Reddy Mekala, Asif Irfan, Eduard C. Groen, Adam Porter, and Mikael Lindvall. Classifying user requirements

from online feedback in small dataset environments using deep learning. In 2021 IEEE 29th International Requirements

Engineering Conference (RE), pages 139–149, 2021.

33 James Tizard, Peter Devine, Hechen Wang, and Kelly Blincoe. A software requirements ecosystem: Linking forum, issue

tracker, and faqs for requirements management. IEEE Transactions on Software Engineering, 49(4):2381–2393, 2023.

34 Lin Shi, Mingzhe Xing, Mingyang Li, Yawen Wang, Shoubin Li, and Qing Wang. Detection of hidden feature requests from

massive chat messages via deep siamese network. In Proceedings of the ACM/IEEE 42nd International Conference on

Software Engineering, ICSE ’20, page 641–653, New York, NY, USA, 2020. Association for Computing Machinery.

35 Shengyi Pan, Lingfeng Bao, Xiaoxue Ren, Xin Xia, David Lo, and Shanping Li. Automating developer chat mining. In

2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE), pages 854–866, 2021.

36 Oktay Türetken, Onur Su, and Onur Demirörs. Automating software requirements generation from business process models.

In 1st Conf. on the Principles of Software Eng.(PRISE’04), Buenos Aires, Argentina, 2004.

37 Karl Cox, Keith Phalp, Steven J. Bleistein, and June M. Verner. Deriving requirements from process models via the problem

frames approach. Inf. Softw. Technol., 47(5):319–337, 2005.

38 Neil A. M. Maiden, Sharon Manning, Sara Jones, and John Greenwood. Generating requirements from systems models using

patterns: a case study. Requir. Eng., 10(4):276–288, 2005.

39 Eric S. K. Yu, Philippe Du Bois, Eric Dubois, and John Mylopoulos. From organization models to system requirements: A

’cooperating agents’ approach. In Proceedings of the Third International Conference on Cooperative Information Systems

(CoopIS-95), May 9-12, pages 194–204, 1995.

40 Emmanuel Letier and Axel van Lamsweerde. Deriving operational software specifications from system goals. In Proceedings

of the Tenth ACM SIGSOFT Symposium on Foundations of Software Engineering 2002, Charleston, South Carolina,

USA, November 18-22, 2002, pages 119–128. ACM, 2002.

41 Renaud De Landtsheer, Emmanuel Letier, and Axel van Lamsweerde. Deriving tabular event-based specifications from

goal-oriented requirements models. Requir. Eng., 9(2):104–120, 2004.

42 Axel Van Lamsweerde. Goal-oriented requirements enginering: a roundtrip from research to practice [enginering read

engineering]. In Proceedings. 12th IEEE International Requirements Engineering Conference, 2004., pages 4–7. IEEE,

2004.

43 Axel van Lamsweerde and Laurent Willemet. Inferring declarative requirements specifications from operational scenarios.

IEEE Trans. Software Eng., 24(12):1089–1114, 1998.

44 Farid Meziane, Nikos Athanasakis, and Sophia Ananiadou. Generating natural language specifications from UML class

diagrams. Requir. Eng., 13(1):1–18, 2008.

45 Brian Berenbach. The automated extraction of requirements from UML models. In 11th IEEE International Conference

on Requirements Engineering (RE 2003), 8-12 September 2003, Monterey Bay, CA, USA, page 287. IEEE Computer

Society, 2003.

46 Amina Souag, Raúl Mazo, Camille Salinesi, and Isabelle Comyn-Wattiau. Using the aman-da method to generate security

requirements: A case study in the maritime domain. Requir. Eng., 23(4):557–580, nov 2018.

47 Ziyan Zhao, Li Zhang, Xiaoli Lian, Xiaoyun Gao, Heyang Lv, and Lin Shi. Reqgen: Keywords-driven software requirements

generation. Mathematics, 11(2), 2023.

48 Koscinski Viktoria, Hashemi Sara, and Mirakhorli Mehdi. On-demand security requirements synthesis with relational

generative adversarial networks. In 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE),

pages 1613–1625, 2023.

49 Mingyang Li, Ye Yang, Lin Shi, Qing Wang, Jun Hu, Xinhua Peng, Weimin Liao, and Guizhen Pi. Automated extraction

of requirement entities by leveraging lstm-crf and transfer learning. In 2020 IEEE International Conference on Software

Maintenance and Evolution (ICSME), pages 208–219, 2020.

50 Francesco Casillo, Vincenzo Deufemia, and Carmine Gravino. Detecting privacy requirements from user stories with nlp

transfer learning models. Information and Software Technology, 146:106853, 2022.

51 Saad Ezzini, Sallam Abualhaija, Chetan Arora, and Mehrdad Sabetzadeh. Automated handling of anaphoric ambiguity

in requirements: A multi-solution study. In 2022 IEEE/ACM 44th International Conference on Software Engineering

(ICSE), pages 187–199, 2022.

52 Yawen Wang, Lin Shi, Mingyang Li, Qing Wang, and Yun Yang. Detecting coreferent entities in natural language require-

ments. Requirements Engineering, 27:351–373, 2022.

53 Yawen Wang, Lin Shi, Mingyang Li, Qing Wang, and Yun Yang. A deep context-wise method for coreference detection

in natural language requirements. In 2020 IEEE 28th International Requirements Engineering Conference (RE), pages

180–191, 2020.

54 Saad Ezzini, Sallam Abualhaija, Chetan Arora, and Mehrdad Sabetzadeh. Ai-based question answering assistance for

analyzing natural-language requirements, 2023.

55 Cody Baker, Lin Deng, Suranjan Chakraborty, and Josh Dehlinger. Automatic multi-class non-functional software require-

ments classification using neural networks. In 2019 IEEE 43rd Annual Computer Software and Applications Conference

(COMPSAC), volume 2, pages 610–615, 2019.

56 Tobias Hey, Jan Keim, Anne Koziolek, and Walter F. Tichy. Norbert: Transfer learning for requirements classification. In

2020 IEEE 28th International Requirements Engineering Conference (RE), pages 169–179, 2020.

57 Xianchang Luo, Yinxing Xue, Zhenchang Xing, and Jiamou Sun. Prcbert: Prompt learning for requirement classifica-

tion using bert-based pretrained language models. In Proceedings of the 37th IEEE/ACM International Conference on

Automated Software Engineering, ASE ’22, New York, NY, USA, 2023. Association for Computing Machinery.

58 Jonas Paul Winkler, Jannis Grönberg, and Andreas Vogelsang. Predicting how to test requirements: An automated approach.

In 2019 IEEE 27th International Requirements Engineering Conference (RE), pages 120–130, 2019.

59 Osamah AlDhafer, Irfan Ahmad, and Sajjad Mahmood. An end-to-end deep learning system for requirements classification

using recurrent neural networks. Information and Software Technology, 147:106877, 2022.

60 Jin Guo, Jinghui Cheng, and Jane Cleland-Huang. Semantically enhanced software traceability using deep learning tech-

niques. In 2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE), pages 3–14, 2017.

61 Muhammad Shah Jahan, Habib Ullah Khan, Shahzad Akbar, Muhammad Umar Farooq, Sarah Gul, Anam Amjad, and

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 75

Fabrizio Riguzzi. Bidirectional language modeling: A systematic literature review. Sci. Program., 2021, jan 2021.

62 Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon Kim, Sunkyu Kim, Chan Ho So, and Jaewoo Kang. BioBERT:

a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics, 36(4):1234–1240, 09

2019.

63 Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing Qin, Ting Liu, Daxin

Jiang, and Ming Zhou. Codebert: A pre-trained model for programming and natural languages. In Trevor Cohn, Yulan He,

and Yang Liu, editors, Findings of the Association for Computational Linguistics: EMNLP 2020, Online Event, 16-20

November 2020, volume EMNLP 2020 of Findings of ACL, pages 1536–1547. Association for Computational Linguistics,

2020.

64 Jinfeng Lin, Yalin Liu, Qingkai Zeng, Meng Jiang, and Jane Cleland-Huang. Traceability transformed: Generating more

accurate links with pre-trained bert models. In 2021 IEEE/ACM 43rd International Conference on Software Engineering

(ICSE), pages 324–335, 2021.

65 Jiahao Tian, Li Zhang, and Xiaoli Lian. A cross-level requirement trace link update model based on bidirectional encoder

representations from transformers. Mathematics, 11(3):623, Jan 2023.

66 Jinfeng Lin, Yalin Liu, and Jane Cleland-Huang. Information retrieval versus deep learning approaches for generating

traceability links in bilingual projects. Empirical Software Engineering, 27, 2022.

67 Iso/iec/ieee international standard - systems and software engineering – life cycle processes – requirements engineering.

ISO/IEC/IEEE 29148:2018(E), pages 1–104, 2018.

68 Alistair Mavin, Philip Wilkinson, Adrian Harwood, and Mark Novak. Easy approach to requirements syntax (ears). In 2009

17th IEEE International Requirements Engineering Conference, pages 317–322, 2009.

69 Xavier Franch, Martin Glinz, Daniel Mendez, and Norbert Seyff. A study about the knowledge and use of requirements

engineering standards in industry. IEEE Transactions on Software Engineering, 48(9):3310–3325, 2022.

70 Jenny T. Liang, Chenyang Yang, and Brad A. Myers. A large-scale survey on the usability of ai programming assistants:

Successes and challenges, 2023.

71 Steven Kelly and Juha-Pekka Tolvanen. Domain-specific Modeling: enabling Full Code Generation. John Wiley & Sons,

2008.

72 Miltiadis Allamanis, Earl T Barr, Premkumar Devanbu, and Charles Sutton. A survey of machine learning for big code and

naturalness. ACM Computing Surveys (CSUR), 51(4):1–37, 2018.

73 Gail C Murphy, Mik Kersten, and Leah Findlater. How are java software developers using the elipse ide? IEEE software,

23(4):76–83, 2006.

74 Marcel Bruch, Martin Monperrus, and Mira Mezini. Learning from examples to improve code completion systems. In

Proceedings of the 7th joint meeting of the European software engineering conference and the ACM SIGSOFT symposium

on the foundations of software engineering, pages 213–222, 2009.

75 Tihomir Gvero, Viktor Kuncak, Ivan Kuraj, and Ruzica Piskac. Complete completion using types and weights. In

Proceedings of the 34th ACM SIGPLAN conference on Programming language design and implementation, pages 27–38,

2013.

76 Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Zihan Wang, Lei Shen, Andi Wang, Yang Li,

et al. Codegeex: A pre-trained model for code generation with multilingual evaluations on humaneval-x. arXiv preprint

arXiv:2303.17568, 2023.

77 Zeyu Sun, Qihao Zhu, Yingfei Xiong, Yican Sun, Lili Mou, and Lu Zhang. Treegen: A tree-based transformer architecture

for code generation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages 8984–8991, 2020.

78 Maxim Rabinovich, Mitchell Stern, and Dan Klein. Abstract syntax networks for code generation and semantic parsing. In

Regina Barzilay and Min-Yen Kan, editors, Proceedings of the 55th Annual Meeting of the Association for Computational

Linguistics, ACL 2017, Vancouver, Canada, July 30 - August 4, Volume 1: Long Papers, pages 1139–1149. Association

for Computational Linguistics, 2017.

79 Hui Jiang, Chulun Zhou, Fandong Meng, Biao Zhang, Jie Zhou, Degen Huang, Qingqiang Wu, and Jinsong Su. Exploring

dynamic selection of branch expansion orders for code generation. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto

Navigli, editors, Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th

International Joint Conference on Natural Language Processing, ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual

Event, August 1-6, 2021, pages 5076–5085. Association for Computational Linguistics, 2021.

80 Srinivasan Iyer, Alvin Cheung, and Luke Zettlemoyer. Learning programmatic idioms for scalable semantic parsing. In

Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan, editors, Proceedings of the 2019 Conference on Empirical Methods

in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-

IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pages 5425–5434. Association for Computational Linguistics,

2019.

81 Pengcheng Yin and Graham Neubig. A syntactic neural model for general-purpose code generation. In Regina Barzilay and

Min-Yen Kan, editors, Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, ACL

2017, Vancouver, Canada, July 30 - August 4, Volume 1: Long Papers, pages 440–450. Association for Computational

Linguistics, 2017.

82 Pengcheng Yin and Graham Neubig. TRANX: A transition-based neural abstract syntax parser for semantic parsing and

code generation. In Eduardo Blanco and Wei Lu, editors, Proceedings of the 2018 Conference on Empirical Methods

in Natural Language Processing, EMNLP 2018: System Demonstrations, Brussels, Belgium, October 31 - November 4,

2018, pages 7–12. Association for Computational Linguistics, 2018.

83 Li Dong and Mirella Lapata. Language to logical form with neural attention. In Proceedings of the 54th Annual Meeting

of the Association for Computational Linguistics, ACL 2016, August 7-12, 2016, Berlin, Germany, Volume 1: Long

Papers. The Association for Computer Linguistics, 2016.

84 Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingning Yao, Shanelle

Roman, Zilin Zhang, and Dragomir R. Radev. Spider: A large-scale human-labeled dataset for complex and cross-domain

semantic parsing and text-to-sql task. In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii, editors,

Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, October

31 - November 4, 2018, pages 3911–3921. Association for Computational Linguistics, 2018.

85 Akshay Sethi, Anush Sankaran, Naveen Panwar, Shreya Khare, and Senthil Mani. Dlpaper2code: Auto-generation of code

from deep learning research papers. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

86 Guang Yang, Yu Zhou, Xiang Chen, Xiangyu Zhang, Tingting Han, and Taolue Chen. Exploitgen: Template-augmented

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 76

exploit code generation based on codebert. Journal of Systems and Software, 197:111577, 2023.

87 Wang Ling, Phil Blunsom, Edward Grefenstette, Karl Moritz Hermann, Tomás Kociský, Fumin Wang, and Andrew W.

Senior. Latent predictor networks for code generation. In Proceedings of the 54th Annual Meeting of the Association for

Computational Linguistics, ACL 2016, August 7-12, 2016, Berlin, Germany, Volume 1: Long Papers. The Association

for Computer Linguistics, 2016.

88 Chen Lyu, Ruyun Wang, Hongyu Zhang, Hanwen Zhang, and Songlin Hu. Embedding api dependency graph for neural code

generation. Empirical Software Engineering, 26:1–51, 2021.

89 Colin B. Clement, Dawn Drain, Jonathan Timcheck, Alexey Svyatkovskiy, and Neel Sundaresan. Pymt5: Multi-mode

translation of natural language and python code with transformers. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang

Liu, editors, Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020,

Online, November 16-20, 2020, pages 9052–9065. Association for Computational Linguistics, 2020.

90 Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and Steven Chu Hong Hoi. Coderl: Mastering code gen-

eration through pretrained models and deep reinforcement learning. Advances in Neural Information Processing Systems,

35:21314–21328, 2022.

91 Yue Wang, Weishi Wang, Shafiq R. Joty, and Steven C. H. Hoi. Codet5: Identifier-aware unified pre-trained encoder-decoder

models for code understanding and generation. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau

Yih, editors, Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021,

Virtual Event / Punta Cana, Dominican Republic, 7-11 November, 2021, pages 8696–8708. Association for Computational

Linguistics, 2021.

92 Yibo Sun, Duyu Tang, Nan Duan, Jianshu Ji, Guihong Cao, Xiaocheng Feng, Bing Qin, Ting Liu, and Ming Zhou. Semantic

parsing with syntax- and table-aware SQL generation. In Iryna Gurevych and Yusuke Miyao, editors, Proceedings of the

56th Annual Meeting of the Association for Computational Linguistics, ACL 2018, Melbourne, Australia, July 15-20,

2018, Volume 1: Long Papers, pages 361–372. Association for Computational Linguistics, 2018.

93 Xin Wang, Yasheng Wang, Yao Wan, Fei Mi, Yitong Li, Pingyi Zhou, Jin Liu, Hao Wu, Xin Jiang, and Qun Liu. Compilable

neural code generation with compiler feedback. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio, editors,

Findings of the Association for Computational Linguistics: ACL 2022, Dublin, Ireland, May 22-27, 2022, pages 9–19.

Association for Computational Linguistics, 2022.

94 Gabriel Poesia, Alex Polozov, Vu Le, Ashish Tiwari, Gustavo Soares, Christopher Meek, and Sumit Gulwani. Synchromesh:

Reliable code generation from pre-trained language models. In The Tenth International Conference on Learning Repre-

sentations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022.

95 Bolin Wei, Ge Li, Xin Xia, Zhiyi Fu, and Zhi Jin. Code generation as a dual task of code summarization. Advances in

neural information processing systems, 32, 2019.

96 Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. Unified pre-training for program understanding

and generation. In Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek Hakkani-Tür, Iz Beltagy, Steven Bethard,

Ryan Cotterell, Tanmoy Chakraborty, and Yichao Zhou, editors, Proceedings of the 2021 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2021, Online,

June 6-11, 2021, pages 2655–2668. Association for Computational Linguistics, 2021.

97 Wei Ye, Rui Xie, Jinglei Zhang, Tianxiang Hu, Xiaoyin Wang, and Shikun Zhang. Leveraging code generation to improve

code retrieval and summarization via dual learning. In Proceedings of The Web Conference 2020, pages 2309–2319, 2020.

98 Tatsunori B Hashimoto, Kelvin Guu, Yonatan Oren, and Percy S Liang. A retrieve-and-edit framework for predicting

structured outputs. Advances in Neural Information Processing Systems, 31, 2018.

99 Sumith Kulal, Panupong Pasupat, Kartik Chandra, Mina Lee, Oded Padon, Alex Aiken, and Percy S Liang. Spoc: Search-

based pseudocode to code. Advances in Neural Information Processing Systems, 32, 2019.

100 Md. Rizwan Parvez, Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. Retrieval augmented code

generation and summarization. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih, editors,

Findings of the Association for Computational Linguistics: EMNLP 2021, Virtual Event / Punta Cana, Dominican

Republic, 16-20 November, 2021, pages 2719–2734. Association for Computational Linguistics, 2021.

101 Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. Mapping language to code in programmatic context.

In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii, editors, Proceedings of the 2018 Conference on

Empirical Methods in Natural Language Processing, Brussels, Belgium, October 31 - November 4, 2018, pages 1643–

1652. Association for Computational Linguistics, 2018.

102 Daya Guo, Duyu Tang, Nan Duan, Ming Zhou, and Jian Yin. Coupling retrieval and meta-learning for context-dependent

semantic parsing. In Anna Korhonen, David R. Traum, and Llúıs Màrquez, editors, Proceedings of the 57th Conference

of the Association for Computational Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long

Papers, pages 855–866. Association for Computational Linguistics, 2019.

103 Jia Li, Yongmin Li, Ge Li, Zhi Jin, Yiyang Hao, and Xing Hu. Skcoder: A sketch-based approach for automatic code

generation. arXiv preprint arXiv:2302.06144, 2023.

104 Li Dong and Mirella Lapata. Coarse-to-fine decoding for neural semantic parsing. In Iryna Gurevych and Yusuke Miyao,

editors, Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, ACL 2018, Melbourne,

Australia, July 15-20, 2018, Volume 1: Long Papers, pages 731–742. Association for Computational Linguistics, 2018.

105 Sijie Shen, Xiang Zhu, Yihong Dong, Qizhi Guo, Yankun Zhen, and Ge Li. Incorporating domain knowledge through

task augmentation for front-end javascript code generation. In Proceedings of the 30th ACM Joint European Software

Engineering Conference and Symposium on the Foundations of Software Engineering, pages 1533–1543, 2022.

106 Zeyu Sun, Qihao Zhu, Lili Mou, Yingfei Xiong, Ge Li, and Lu Zhang. A grammar-based structural cnn decoder for code

generation. In Proceedings of the AAAI conference on artificial intelligence, volume 33, pages 7055–7062, 2019.

107 Binbin Xie, Jinsong Su, Yubin Ge, Xiang Li, Jianwei Cui, Junfeng Yao, and Bin Wang. Improving tree-structured decoder

training for code generation via mutual learning. In Proceedings of the AAAI Conference on Artificial Intelligence,

volume 35, pages 14121–14128, 2021.

108 https://en.wikipedia.org/wiki/Long short-term memory.

109 http://www.gabormelli.com/RKB/Bidirectional LSTM (BiLSTM) Model.

110 Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of gated recurrent neural

networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

111 Chaozheng Wang, Junhao Hu, Cuiyun Gao, Yu Jin, Tao Xie, Hailiang Huang, Zhenyu Lei, and Yuetang Deng. Practitioners’

expectations on code completion. arXiv preprint arXiv:2301.03846, 2023.

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

https://en.wikipedia.org/wiki/Long_short-term_memory
http://www.gabormelli.com/RKB/Bidirectional_LSTM_(BiLSTM)_Model

Sci China Inf Sci 77

112 Fang Liu, Ge Li, Yunfei Zhao, and Zhi Jin. Multi-task learning based pre-trained language model for code completion.

In Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering, ASE ’20, page

473–485, New York, NY, USA, 2021. Association for Computing Machinery.

113 Maliheh Izadi, Roberta Gismondi, and Georgios Gousios. Codefill: Multi-token code completion by jointly learning from

structure and naming sequences. In Proceedings of the 44th International Conference on Software Engineering, pages

401–412, 2022.

114 Ze Tang, Jidong Ge, Shangqing Liu, Tingwei Zhu, Tongtong Xu, Liguo Huang, and Bin Luo. Domain adaptive code

completion via language models and decoupled domain databases. arXiv preprint arXiv:2308.09313, 2023.

115 Zhensu Sun, Xiaoning Du, Fu Song, and Li Li. Codemark: Imperceptible watermarking for code datasets against neural

code completion models. arXiv preprint arXiv:2308.14401, 2023.

116 Pengyu Nie, Rahul Banerjee, Junyi Jessy Li, Raymond J Mooney, and Milos Gligoric. Learning deep semantics for test

completion. arXiv preprint arXiv:2302.10166, 2023.

117 Samip Dahal, Adyasha Maharana, and Mohit Bansal. Analysis of tree-structured architectures for code generation. In

Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 4382–4391, 2021.

118 Sajad Norouzi, Keyi Tang, and Yanshuai Cao. Code generation from natural language with less prior knowledge and more

monolingual data. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the

11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers), pages 776–785, 2021.

119 Antonio Mastropaolo, Luca Pascarella, Emanuela Guglielmi, Matteo Ciniselli, Simone Scalabrino, Rocco Oliveto, and

Gabriele Bavota. On the robustness of code generation techniques: An empirical study on github copilot. arXiv preprint

arXiv:2302.00438, 2023.

120 Frank F Xu, Bogdan Vasilescu, and Graham Neubig. In-ide code generation from natural language: Promise and challenges.

ACM Transactions on Software Engineering and Methodology (TOSEM), 31(2):1–47, 2022.

121 Qingyuan Liang, Zeyu Sun, Qihao Zhu, Wenjie Zhang, Lian Yu, Yingfei Xiong, and Lu Zhang. Lyra: A benchmark for

turducken-style code generation. In Luc De Raedt, editor, Proceedings of the Thirty-First International Joint Conference

on Artificial Intelligence, IJCAI 2022, Vienna, Austria, 23-29 July 2022, pages 4238–4244. ijcai.org, 2022.

122 Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin Burns, Samir Puranik,

Horace He, Dawn Song, and Jacob Steinhardt. Measuring coding challenge competence with APPS. In Joaquin Vanschoren

and Sai-Kit Yeung, editors, Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks

1, NeurIPS Datasets and Benchmarks 2021, December 2021, virtual, 2021.

123 Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin B. Clement, Dawn Drain, Daxin

Jiang, Duyu Tang, Ge Li, Lidong Zhou, Linjun Shou, Long Zhou, Michele Tufano, Ming Gong, Ming Zhou, Nan Duan, Neel

Sundaresan, Shao Kun Deng, Shengyu Fu, and Shujie Liu. Codexglue: A machine learning benchmark dataset for code

understanding and generation. In Joaquin Vanschoren and Sai-Kit Yeung, editors, Proceedings of the Neural Information

Processing Systems Track on Datasets and Benchmarks 1, NeurIPS Datasets and Benchmarks 2021, December 2021,

virtual, 2021.

124 Xinyue Shen, Zeyuan Chen, Michael Backes, and Yang Zhang. In chatgpt we trust? measuring and characterizing the

reliability of chatgpt. arXiv preprint arXiv:2304.08979, 2023.

125 Stacy K. Lukins, Nicholas A. Kraft, and Letha H. Etzkorn. Source code retrieval for bug localization using latent dirichlet

allocation. In Ahmed E. Hassan, Andy Zaidman, and Massimiliano Di Penta, editors, WCRE 2008, Proceedings of the 15th

Working Conference on Reverse Engineering, Antwerp, Belgium, October 15-18, 2008, pages 155–164. IEEE Computer

Society, 2008.

126 Shaunak Chatterjee, Sudeep Juvekar, and Koushik Sen. SNIFF: A search engine for java using free-form queries. In Marsha

Chechik and Martin Wirsing, editors, Fundamental Approaches to Software Engineering, 12th International Conference,

FASE 2009, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2009, York,

UK, March 22-29, 2009. Proceedings, volume 5503 of Lecture Notes in Computer Science, pages 385–400. Springer, 2009.

127 Emily Hill, Manuel Roldan-Vega, Jerry Alan Fails, and Greg Mallet. Nl-based query refinement and contextualized code

search results: A user study. In Serge Demeyer, Dave W. Binkley, and Filippo Ricca, editors, 2014 Software Evolution Week

- IEEE Conference on Software Maintenance, Reengineering, and Reverse Engineering, CSMR-WCRE 2014, Antwerp,

Belgium, February 3-6, 2014, pages 34–43. IEEE Computer Society, 2014.

128 Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin B. Clement, Dawn Drain, Daxin

Jiang, Duyu Tang, Ge Li, Lidong Zhou, Linjun Shou, Long Zhou, Michele Tufano, Ming Gong, Ming Zhou, Nan Duan, Neel

Sundaresan, Shao Kun Deng, Shengyu Fu, and Shujie Liu. Codexglue: A machine learning benchmark dataset for code

understanding and generation. In Joaquin Vanschoren and Sai-Kit Yeung, editors, Proceedings of the Neural Information

Processing Systems Track on Datasets and Benchmarks 1, NeurIPS Datasets and Benchmarks 2021, December 2021,

virtual, 2021.

129 Collin McMillan, Mark Grechanik, Denys Poshyvanyk, Qing Xie, and Chen Fu. Portfolio: finding relevant functions and

their usage. In Richard N. Taylor, Harald C. Gall, and Nenad Medvidovic, editors, Proceedings of the 33rd International

Conference on Software Engineering, ICSE 2011, Waikiki, Honolulu , HI, USA, May 21-28, 2011, pages 111–120. ACM,

2011.

130 Xuan Li, Zerui Wang, Qianxiang Wang, Shoumeng Yan, Tao Xie, and Hong Mei. Relationship-aware code search for

javascript frameworks. In Thomas Zimmermann, Jane Cleland-Huang, and Zhendong Su, editors, Proceedings of the

24th ACM SIGSOFT International Symposium on Foundations of Software Engineering, FSE 2016, Seattle, WA, USA,

November 13-18, 2016, pages 690–701. ACM, 2016.

131 Saksham Sachdev, Hongyu Li, Sifei Luan, Seohyun Kim, Koushik Sen, and Satish Chandra. Retrieval on source code: a

neural code search. In Justin Gottschlich and Alvin Cheung, editors, Proceedings of the 2nd ACM SIGPLAN International

Workshop on Machine Learning and Programming Languages, MAPL@PLDI 2018, Philadelphia, PA, USA, June 18-22,

2018, pages 31–41. ACM, 2018.

132 Yanzhen Zou, Chunyang Ling, Zeqi Lin, and Bing Xie. Graph embedding based code search in software project. In

Proceedings of the 10th Asia-Pacific Symposium on Internetware, pages 1–10, 2018.

133 Ziyu Yao, Daniel S. Weld, Wei-Peng Chen, and Huan Sun. Staqc: A systematically mined question-code dataset from stack

overflow. In Proceedings of the 2018 World Wide Web Conference on World Wide Web, WWW 2018, Lyon, France,

April 23-27, 2018, pages 1693–1703. ACM, 2018.

134 Yao Wan, Jingdong Shu, Yulei Sui, Guandong Xu, Zhou Zhao, Jian Wu, and Philip S. Yu. Multi-modal attention net-

work learning for semantic source code retrieval. In 34th IEEE/ACM International Conference on Automated Software

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 78

Engineering, ASE 2019, San Diego, CA, USA, November 11-15, 2019, pages 13–25. IEEE, 2019.

135 Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan Vasilescu, and Graham Neubig. Learning to mine aligned code and

natural language pairs from stack overflow. In Andy Zaidman, Yasutaka Kamei, and Emily Hill, editors, Proceedings of

the 15th International Conference on Mining Software Repositories, MSR 2018, Gothenburg, Sweden, May 28-29, 2018,

pages 476–486. ACM, 2018.

136 Shangqing Liu, Xiaofei Xie, Lei Ma, Jing Kai Siow, and Yang Liu. Graphsearchnet: Enhancing gnns via capturing global

dependency for semantic code search. CoRR, abs/2111.02671, 2021.

137 Xiaonan Li, Yeyun Gong, Yelong Shen, Xipeng Qiu, Hang Zhang, Bolun Yao, Weizhen Qi, Daxin Jiang, Weizhu Chen, and

Nan Duan. Coderetriever: Unimodal and bimodal contrastive learning. arXiv preprint arXiv:2201.10866, 2022.

138 He Jiang, Liming Nie, Zeyi Sun, Zhilei Ren, Weiqiang Kong, Tao Zhang, and Xiapu Luo. ROSF: leveraging information

retrieval and supervised learning for recommending code snippets. IEEE Trans. Serv. Comput., 12(1):34–46, 2019.

139 Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey Svyatkovskiy,

Shengyu Fu, Michele Tufano, Shao Kun Deng, Colin B. Clement, Dawn Drain, Neel Sundaresan, Jian Yin, Daxin Jiang,

and Ming Zhou. Graphcodebert: Pre-training code representations with data flow. In 9th International Conference on

Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021.

140 Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming Zhou, and Jian Yin. Unixcoder: Unified cross-modal pre-training for

code representation. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio, editors, Proceedings of the 60th Annual

Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2022, Dublin, Ireland, May

22-27, 2022, pages 7212–7225. Association for Computational Linguistics, 2022.

141 Hongyu Li, Seohyun Kim, and Satish Chandra. Neural code search evaluation dataset. CoRR, abs/1908.09804, 2019.

142 Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc Brockschmidt. Codesearchnet challenge:

Evaluating the state of semantic code search. CoRR, abs/1909.09436, 2019.

143 Geert Heyman and Tom Van Cutsem. Neural code search revisited: Enhancing code snippet retrieval through natural

language intent. CoRR, abs/2008.12193, 2020.

144 Sushil Krishna Bajracharya, Trung Chi Ngo, Erik Linstead, Yimeng Dou, Paul Rigor, Pierre Baldi, and Cristina Videira

Lopes. Sourcerer: a search engine for open source code supporting structure-based search. In Peri L. Tarr and William R.

Cook, editors, Companion to the 21th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,

Languages, and Applications, OOPSLA 2006, October 22-26, 2006, Portland, Oregon, USA, pages 681–682. ACM, 2006.

145 Meili Lu, Xiaobing Sun, Shaowei Wang, David Lo, and Yucong Duan. Query expansion via wordnet for effective code

search. In Yann-Gaël Guéhéneuc, Bram Adams, and Alexander Serebrenik, editors, 22nd IEEE International Conference

on Software Analysis, Evolution, and Reengineering, SANER 2015, Montreal, QC, Canada, March 2-6, 2015, pages

545–549. IEEE Computer Society, 2015.

146 Fei Lv, Hongyu Zhang, Jian-Guang Lou, Shaowei Wang, Dongmei Zhang, and Jianjun Zhao. Codehow: Effective code

search based on API understanding and extended boolean model (E). In Myra B. Cohen, Lars Grunske, and Michael

Whalen, editors, 30th IEEE/ACM International Conference on Automated Software Engineering, ASE 2015, Lincoln,

NE, USA, November 9-13, 2015, pages 260–270. IEEE Computer Society, 2015.

147 Mohammad Masudur Rahman. Supporting code search with context-aware, analytics-driven, effective query reformulation.

In Joanne M. Atlee, Tevfik Bultan, and Jon Whittle, editors, Proceedings of the 41st International Conference on Software

Engineering: Companion Proceedings, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019, pages 226–229. IEEE /

ACM, 2019.

148 Emily Hill, Lori L. Pollock, and K. Vijay-Shanker. Improving source code search with natural language phrasal represen-

tations of method signatures. In Perry Alexander, Corina S. Pasareanu, and John G. Hosking, editors, 26th IEEE/ACM

International Conference on Automated Software Engineering (ASE 2011), Lawrence, KS, USA, November 6-10, 2011,

pages 524–527. IEEE Computer Society, 2011.

149 Jason Liu, Seohyun Kim, Vijayaraghavan Murali, Swarat Chaudhuri, and Satish Chandra. Neural query expansion for code

search. In Tim Mattson, Abdullah Muzahid, and Armando Solar-Lezama, editors, Proceedings of the 3rd ACM SIGPLAN

International Workshop on Machine Learning and Programming Languages, MAPL@PLDI 2019, Phoenix, AZ, USA,

June 22, 2019, pages 29–37. ACM, 2019.

150 Kaibo Cao, Chunyang Chen, Sebastian Baltes, Christoph Treude, and Xiang Chen. Automated query reformulation for

efficient search based on query logs from stack overflow. In 2021 IEEE/ACM 43rd International Conference on Software

Engineering (ICSE), pages 1273–1285. IEEE, 2021.

151 Shuhan Yan, Hang Yu, Yuting Chen, Beijun Shen, and Lingxiao Jiang. Are the code snippets what we are searching for? A

benchmark and an empirical study on code search with natural-language queries. In Kostas Kontogiannis, Foutse Khomh,

Alexander Chatzigeorgiou, Marios-Eleftherios Fokaefs, and Minghui Zhou, editors, 27th IEEE International Conference

on Software Analysis, Evolution and Reengineering, SANER 2020, London, ON, Canada, February 18-21, 2020, pages

344–354. IEEE, 2020.

152 Sifei Luan, Di Yang, Celeste Barnaby, Koushik Sen, and Satish Chandra. Aroma: code recommendation via structural code

search. Proc. ACM Program. Lang., 3(OOPSLA):152:1–152:28, 2019.

153 George Mathew and Kathryn T. Stolee. Cross-language code search using static and dynamic analyses. In Diomidis Spinellis,

Georgios Gousios, Marsha Chechik, and Massimiliano Di Penta, editors, ESEC/FSE ’21: 29th ACM Joint European

Software Engineering Conference and Symposium on the Foundations of Software Engineering, Athens, Greece, August

23-28, 2021, pages 205–217. ACM, 2021.

154 Daniel Perez and Shigeru Chiba. Cross-language clone detection by learning over abstract syntax trees. In 2019 IEEE/ACM

16th International Conference on Mining Software Repositories (MSR), pages 518–528, 2019.

155 Trong Duc Nguyen, Anh Tuan Nguyen, Hung Dang Phan, and Tien N. Nguyen. Exploring API embedding for API usages and

applications. In Sebastián Uchitel, Alessandro Orso, and Martin P. Robillard, editors, Proceedings of the 39th International

Conference on Software Engineering, ICSE 2017, Buenos Aires, Argentina, May 20-28, 2017, pages 438–449. IEEE /

ACM, 2017.

156 Binger Chen and Ziawasch Abedjan. Interactive cross-language code retrieval with auto-encoders. In 2021 36th IEEE/ACM

International Conference on Automated Software Engineering (ASE), pages 167–178. IEEE, 2021.

157 Junjie Huang, Duyu Tang, Linjun Shou, Ming Gong, Ke Xu, Daxin Jiang, Ming Zhou, and Nan Duan. Cosqa: 20, 000+

web queries for code search and question answering. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli, editors,

Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint

Conference on Natural Language Processing, ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual Event, August 1-6,

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 79

2021, pages 5690–5700. Association for Computational Linguistics, 2021.

158 Mohammad Abdullah Matin Khan, M. Saiful Bari, Xuan Long Do, Weishi Wang, Md. Rizwan Parvez, and Shafiq R. Joty.

xcodeeval: A large scale multilingual multitask benchmark for code understanding, generation, translation and retrieval.

CoRR, abs/2303.03004, 2023.

159 Chong Wang, Xin Peng, Zhenchang Xing, Yue Zhang, Mingwei Liu, Rong Luo, and Xiujie Meng. Xcos: Explainable code

search based on query scoping and knowledge graph. ACM Trans. Softw. Eng. Methodol., 32(6):140:1–140:28, 2023.

160 Zhensu Sun, Li Li, Yan Liu, Xiaoning Du, and Li Li. On the importance of building high-quality training datasets for neural

code search. In 44th IEEE/ACM 44th International Conference on Software Engineering, ICSE 2022, Pittsburgh, PA,

USA, May 25-27, 2022, pages 1609–1620. ACM, 2022.

161 Akhilesh Deepak Gotmare, Junnan Li, Shafiq R. Joty, and Steven C. H. Hoi. Cascaded fast and slow models for efficient

semantic code search. CoRR, abs/2110.07811, 2021.

162 Wenchao Gu, Yanlin Wang, Lun Du, Hongyu Zhang, Shi Han, Dongmei Zhang, and Michael R. Lyu. Accelerating code

search with deep hashing and code classification. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio, editors,

Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),

ACL 2022, Dublin, Ireland, May 22-27, 2022, pages 2534–2544. Association for Computational Linguistics, 2022.

163 Alexander M. Rush, Sumit Chopra, and Jason Weston. A neural attention model for abstractive sentence summarization.

In Llúıs Màrquez, Chris Callison-Burch, Jian Su, Daniele Pighin, and Yuval Marton, editors, Proceedings of the 2015

Conference on Empirical Methods in Natural Language Processing, EMNLP 2015, Lisbon, Portugal, September 17-21,

2015, pages 379–389. The Association for Computational Linguistics, 2015.

164 Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. code2seq: Generating sequences from structured representations

of code. In 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9,

2019. OpenReview.net, 2019.

165 Kun Xu, Lingfei Wu, Zhiguo Wang, Yansong Feng, and Vadim Sheinin. Graph2seq: Graph to sequence learning with

attention-based neural networks. CoRR, abs/1804.00823, 2018.

166 Giriprasad Sridhara, Emily Hill, Divya Muppaneni, Lori L. Pollock, and K. Vijay-Shanker. Towards automatically generating

summary comments for java methods. In Charles Pecheur, Jamie Andrews, and Elisabetta Di Nitto, editors, ASE 2010,

25th IEEE/ACM International Conference on Automated Software Engineering, Antwerp, Belgium, September 20-24,

2010, pages 43–52. ACM, 2010.

167 Nahla J. Abid, Natalia Dragan, Michael L. Collard, and Jonathan I. Maletic. Using stereotypes in the automatic generation

of natural language summaries for C++ methods. In Rainer Koschke, Jens Krinke, and Martin P. Robillard, editors, 2015

IEEE International Conference on Software Maintenance and Evolution, ICSME 2015, Bremen, Germany, September

29 - October 1, 2015, pages 561–565. IEEE Computer Society, 2015.

168 Sonia Haiduc, Jairo Aponte, Laura Moreno, and Andrian Marcus. On the use of automated text summarization techniques for

summarizing source code. In Giuliano Antoniol, Martin Pinzger, and Elliot J. Chikofsky, editors, 17th Working Conference

on Reverse Engineering, WCRE 2010, 13-16 October 2010, Beverly, MA, USA, pages 35–44. IEEE Computer Society,

2010.

169 Sonia Haiduc, Jairo Aponte, and Andrian Marcus. Supporting program comprehension with source code summarization. In

Jeff Kramer, Judith Bishop, Premkumar T. Devanbu, and Sebastián Uchitel, editors, Proceedings of the 32nd ACM/IEEE

International Conference on Software Engineering - Volume 2, ICSE 2010, Cape Town, South Africa, 1-8 May 2010,

pages 223–226. ACM, 2010.

170 Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neural networks. In Zoubin Ghahramani,

Max Welling, Corinna Cortes, Neil D. Lawrence, and Kilian Q. Weinberger, editors, Advances in Neural Information Pro-

cessing Systems 27: Annual Conference on Neural Information Processing Systems 2014, December 8-13 2014, Montreal,

Quebec, Canada, pages 3104–3112, 2014.

171 Miltiadis Allamanis, Hao Peng, and Charles Sutton. A convolutional attention network for extreme summarization of

source code. In Maria-Florina Balcan and Kilian Q. Weinberger, editors, Proceedings of the 33nd International Conference

on Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016, volume 48 of JMLR Workshop and

Conference Proceedings, pages 2091–2100. JMLR.org, 2016.

172 Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. A transformer-based approach for source

code summarization. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel R. Tetreault, editors, Proceedings of the 58th

Annual Meeting of the Association for Computational Linguistics, ACL 2020, Online, July 5-10, 2020, pages 4998–5007.

Association for Computational Linguistics, 2020.

173 Ruyun Wang, Hanwen Zhang, Guoliang Lu, Lei Lyu, and Chen Lyu. Fret: Functional reinforced transformer with BERT

for code summarization. IEEE Access, 8:135591–135604, 2020.

174 Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, and Xudong Liu. Retrieval-based neural source code summarization. In

Gregg Rothermel and Doo-Hwan Bae, editors, ICSE ’20: 42nd International Conference on Software Engineering, Seoul,

South Korea, 27 June - 19 July, 2020, pages 1385–1397. ACM, 2020.

175 Alexander LeClair, Aakash Bansal, and Collin McMillan. Ensemble models for neural source code summarization of subrou-

tines. In IEEE International Conference on Software Maintenance and Evolution, ICSME 2021, Luxembourg, September

27 - October 1, 2021, pages 286–297. IEEE, 2021.

176 Zi Gong, Cuiyun Gao, Yasheng Wang, Wenchao Gu, Yun Peng, and Zenglin Xu. Source code summarization with structural

relative position guided transformer. In IEEE International Conference on Software Analysis, Evolution and Reengineer-

ing, SANER 2022, Honolulu, HI, USA, March 15-18, 2022, pages 13–24. IEEE, 2022.

177 Qingying Chen and Minghui Zhou. A neural framework for retrieval and summarization of source code. In Marianne

Huchard, Christian Kästner, and Gordon Fraser, editors, Proceedings of the 33rd ACM/IEEE International Conference on

Automated Software Engineering, ASE 2018, Montpellier, France, September 3-7, 2018, pages 826–831. ACM, 2018.

178 Siyuan Jiang, Ameer Armaly, and Collin McMillan. Automatically generating commit messages from diffs using neural

machine translation. In Grigore Rosu, Massimiliano Di Penta, and Tien N. Nguyen, editors, Proceedings of the 32nd

IEEE/ACM International Conference on Automated Software Engineering, ASE 2017, Urbana, IL, USA, October 30 -

November 03, 2017, pages 135–146. IEEE Computer Society, 2017.

179 Siyuan Jiang and Collin McMillan. Towards automatic generation of short summaries of commits. In Giuseppe Scanniello,

David Lo, and Alexander Serebrenik, editors, Proceedings of the 25th International Conference on Program Comprehen-

sion, ICPC 2017, Buenos Aires, Argentina, May 22-23, 2017, pages 320–323. IEEE Computer Society, 2017.

180 Shuyao Jiang. Boosting neural commit message generation with code semantic analysis. In 34th IEEE/ACM International

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 80

Conference on Automated Software Engineering, ASE 2019, San Diego, CA, USA, November 11-15, 2019, pages 1280–

1282. IEEE, 2019.

181 Zhongxin Liu, Xin Xia, Christoph Treude, David Lo, and Shanping Li. Automatic generation of pull request descriptions.

In 34th IEEE/ACM International Conference on Automated Software Engineering, ASE 2019, San Diego, CA, USA,

November 11-15, 2019, pages 176–188. IEEE, 2019.

182 Aakash Bansal, Sakib Haque, and Collin McMillan. Project-level encoding for neural source code summarization of sub-

routines. In 29th IEEE/ACM International Conference on Program Comprehension, ICPC 2021, Madrid, Spain, May

20-21, 2021, pages 253–264. IEEE, 2021.

183 Rui Xie, Wei Ye, Jinan Sun, and Shikun Zhang. Exploiting method names to improve code summarization: A deliberation

multi-task learning approach. In 29th IEEE/ACM International Conference on Program Comprehension, ICPC 2021,

Madrid, Spain, May 20-21, 2021, pages 138–148. IEEE, 2021.

184 Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. Deep code comment generation. In Foutse Khomh, Chanchal K. Roy,

and Janet Siegmund, editors, Proceedings of the 26th Conference on Program Comprehension, ICPC 2018, Gothenburg,

Sweden, May 27-28, 2018, pages 200–210. ACM, 2018.

185 Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. Deep code comment generation with hybrid lexical and syntactical

information. Empir. Softw. Eng., 25(3):2179–2217, 2020.

186 Yuan Huang, Shaohao Huang, Huanchao Chen, Xiangping Chen, Zibin Zheng, Xiapu Luo, Nan Jia, Xinyu Hu, and Xiaocong

Zhou. Towards automatically generating block comments for code snippets. Inf. Softw. Technol., 127:106373, 2020.

187 Ze Tang, Xiaoyu Shen, Chuanyi Li, Jidong Ge, Liguo Huang, Zheling Zhu, and Bin Luo. Ast-trans: Code summarization

with efficient tree-structured attention. In 44th IEEE/ACM 44th International Conference on Software Engineering,

ICSE 2022, Pittsburgh, PA, USA, May 25-27, 2022, pages 150–162. ACM, 2022.

188 Shangqing Liu, Cuiyun Gao, Sen Chen, Lun Yiu Nie, and Yang Liu. ATOM: commit message generation based on abstract

syntax tree and hybrid ranking. IEEE Trans. Software Eng., 48(5):1800–1817, 2022.

189 Yao Wan, Zhou Zhao, Min Yang, Guandong Xu, Haochao Ying, Jian Wu, and Philip S. Yu. Improving automatic source code

summarization via deep reinforcement learning. In Marianne Huchard, Christian Kästner, and Gordon Fraser, editors, Pro-

ceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering, ASE 2018, Montpellier,

France, September 3-7, 2018, pages 397–407. ACM, 2018.

190 Alexander LeClair, Siyuan Jiang, and Collin McMillan. A neural model for generating natural language summaries of

program subroutines. In Joanne M. Atlee, Tevfik Bultan, and Jon Whittle, editors, Proceedings of the 41st International

Conference on Software Engineering, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019, pages 795–806. IEEE /

ACM, 2019.

191 Shengbin Xu, Yuan Yao, Feng Xu, Tianxiao Gu, Hanghang Tong, and Jian Lu. Commit message generation for source

code changes. In Sarit Kraus, editor, Proceedings of the Twenty-Eighth International Joint Conference on Artificial

Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019, pages 3975–3981. ijcai.org, 2019.

192 Zheng Li, Yonghao Wu, Bin Peng, Xiang Chen, Zeyu Sun, Yong Liu, and Deli Yu. Secnn: A semantic CNN parser for code

comment generation. J. Syst. Softw., 181:111036, 2021.

193 Yuexiu Gao and Chen Lyu. M2TS: multi-scale multi-modal approach based on transformer for source code summarization.

In Ayushi Rastogi, Rosalia Tufano, Gabriele Bavota, Venera Arnaoudova, and Sonia Haiduc, editors, Proceedings of the

30th IEEE/ACM International Conference on Program Comprehension, ICPC 2022, Virtual Event, May 16-17, 2022,

pages 24–35. ACM, 2022.

194 Wenhua Wang, Yuqun Zhang, Zhengran Zeng, and Guandong Xu. Transˆ3: A transformer-based framework for unifying

code summarization and code search. CoRR, abs/2003.03238, 2020.

195 Chen Lin, Zhichao Ouyang, Junqing Zhuang, Jianqiang Chen, Hui Li, and Rongxin Wu. Improving code summarization

with block-wise abstract syntax tree splitting. In 29th IEEE/ACM International Conference on Program Comprehension,

ICPC 2021, Madrid, Spain, May 20-21, 2021, pages 184–195. IEEE, 2021.

196 Ensheng Shi, Yanlin Wang, Lun Du, Hongyu Zhang, Shi Han, Dongmei Zhang, and Hongbin Sun. CAST: enhancing code

summarization with hierarchical splitting and reconstruction of abstract syntax trees. In Marie-Francine Moens, Xuanjing

Huang, Lucia Specia, and Scott Wen-tau Yih, editors, Proceedings of the 2021 Conference on Empirical Methods in

Natural Language Processing, EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 7-11 November, 2021,

pages 4053–4062. Association for Computational Linguistics, 2021.

197 Patrick Fernandes, Miltiadis Allamanis, and Marc Brockschmidt. Structured neural summarization. In 7th International

Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.

198 Alexander LeClair, Sakib Haque, Lingfei Wu, and Collin McMillan. Improved code summarization via a graph neural

network. In ICPC ’20: 28th International Conference on Program Comprehension, Seoul, Republic of Korea, July

13-15, 2020, pages 184–195. ACM, 2020.

199 Shangqing Liu, Yu Chen, Xiaofei Xie, Jing Kai Siow, and Yang Liu. Retrieval-augmented generation for code summarization

via hybrid GNN. In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May

3-7, 2021. OpenReview.net, 2021.

200 Xuye Liu, Dakuo Wang, April Yi Wang, Yufang Hou, and Lingfei Wu. Haconvgnn: Hierarchical attention based convolu-

tional graph neural network for code documentation generation in jupyter notebooks. In Marie-Francine Moens, Xuanjing

Huang, Lucia Specia, and Scott Wen-tau Yih, editors, Findings of the Association for Computational Linguistics: EMNLP

2021, Virtual Event / Punta Cana, Dominican Republic, 16-20 November, 2021, pages 4473–4485. Association for Com-

putational Linguistics, 2021.

201 Wuyan Cheng, Po Hu, Shaozhi Wei, and Ran Mo. Keyword-guided abstractive code summarization via incorporating

structural and contextual information. Inf. Softw. Technol., 150:106987, 2022.

202 Juncai Guo, Jin Liu, Yao Wan, Li Li, and Pingyi Zhou. Modeling hierarchical syntax structure with triplet position for

source code summarization. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio, editors, Proceedings of the 60th

Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2022, Dublin, Ireland,

May 22-27, 2022, pages 486–500. Association for Computational Linguistics, 2022.

203 Zheng Ma, Yuexiu Gao, Lei Lyu, and Chen Lyu. MMF3: neural code summarization based on multi-modal fine-grained

feature fusion. In Fernanda Madeiral, Casper Lassenius, Tayana Conte, and Tomi Männistö, editors, ESEM ’22: ACM /

IEEE International Symposium on Empirical Software Engineering and Measurement, Helsinki Finland, September 19

- 23, 2022, pages 171–182. ACM, 2022.

204 Yu Wang, Yu Dong, Xuesong Lu, and Aoying Zhou. Gypsum: learning hybrid representations for code summarization. In

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 81

Ayushi Rastogi, Rosalia Tufano, Gabriele Bavota, Venera Arnaoudova, and Sonia Haiduc, editors, Proceedings of the 30th

IEEE/ACM International Conference on Program Comprehension, ICPC 2022, Virtual Event, May 16-17, 2022, pages

12–23. ACM, 2022.

205 Xing Hu, Ge Li, Xin Xia, David Lo, Shuai Lu, and Zhi Jin. Summarizing source code with transferred API knowledge. In

Jérôme Lang, editor, Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI

2018, July 13-19, 2018, Stockholm, Sweden, pages 2269–2275. ijcai.org, 2018.

206 Ramin Shahbazi, Rishab Sharma, and Fatemeh H. Fard. Api2com: On the improvement of automatically generated code

comments using API documentations. In 29th IEEE/ACM International Conference on Program Comprehension, ICPC

2021, Madrid, Spain, May 20-21, 2021, pages 411–421. IEEE, 2021.

207 Xuejian Gao, Xue Jiang, Qiong Wu, Xiao Wang, Chen Lyu, and Lei Lyu. Gt-simnet: Improving code automatic summa-

rization via multi-modal similarity networks. J. Syst. Softw., 194:111495, 2022.

208 Yu Zhou, Xin Yan, Wenhua Yang, Taolue Chen, and Zhiqiu Huang. Augmenting java method comments generation with

context information based on neural networks. J. Syst. Softw., 156:328–340, 2019.

209 Wenhua Wang, Yuqun Zhang, Yulei Sui, Yao Wan, Zhou Zhao, Jian Wu, Philip S. Yu, and Guandong Xu. Reinforcement-

learning-guided source code summarization using hierarchical attention. IEEE Trans. Software Eng., 48(2):102–119, 2022.

210 Yanlin Wang, Lun Du, Ensheng Shi, Yuxuan Hu, Shi Han, and Dongmei Zhang. Cocogum: Contextual code summarization

with multi-relational gnn on umls. Microsoft, Tech. Rep. MSR-TR-2020-16, 2020.

211 Jikyoeng Son, Joonghyuk Hahn, HyeonTae Seo, and Yo-Sub Han. Boosting code summarization by embedding code struc-

tures. In Nicoletta Calzolari, Chu-Ren Huang, Hansaem Kim, James Pustejovsky, Leo Wanner, Key-Sun Choi, Pum-Mo

Ryu, Hsin-Hsi Chen, Lucia Donatelli, Heng Ji, Sadao Kurohashi, Patrizia Paggio, Nianwen Xue, Seokhwan Kim, Younggyun

Hahm, Zhong He, Tony Kyungil Lee, Enrico Santus, Francis Bond, and Seung-Hoon Na, editors, Proceedings of the 29th

International Conference on Computational Linguistics, COLING 2022, Gyeongju, Republic of Korea, October 12-17,

2022, pages 5966–5977. International Committee on Computational Linguistics, 2022.

212 Chunyan Zhang, Qinglei Zhou, Meng Qiao, Ke Tang, Lianqiu Xu, and Fudong Liu. Re trans: Combined retrieval and

transformer model for source code summarization. Entropy, 24(10):1372, 2022.

213 Yuan Huang, Jinbo Huang, Xiangping Chen, Kunning He, and Xiaocong Zhou. Bcgen: a comment generation method for

bytecode. Autom. Softw. Eng., 30(1):5, 2023.

214 Antonio Valerio Miceli Barone and Rico Sennrich. A parallel corpus of python functions and documentation strings for

automated code documentation and code generation. In Greg Kondrak and Taro Watanabe, editors, Proceedings of the

Eighth International Joint Conference on Natural Language Processing, IJCNLP 2017, Taipei, Taiwan, November 27 -

December 1, 2017, Volume 2: Short Papers, pages 314–319. Asian Federation of Natural Language Processing, 2017.

215 Hanyang Guo, Xiangping Chen, Yuan Huang, Yanlin Wang, Xi Ding, Zibin Zheng, Xiaocong Zhou, and Hong-Ning Dai.

Snippet comment generation based on code context expansion. ACM Trans. Softw. Eng. Methodol., 33(1), nov 2023.

216 Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts. Refactoring: Improving the Design of Existing

Code. Addison-Wesley, 1999.

217 Nikolaos Tsantalis and Alexander Chatzigeorgiou. Identification of move method refactoring opportunities. IEEE Trans-

actions on Software Engineering, 35(3):347–367, 2009.

218 Ricardo Terra, Marco Tulio Valente, Sergio Miranda, and Vitor Sales. JMove: A novel heuristic and tool to detect move

method refactoring opportunities. Journal of Systems and Software, 138:19–36, 2018.

219 Hui Liu, Zhifeng Xu, and Yanzhen Zou. Deep learning based feature envy detection. In Proceedings of the 33rd ACM/IEEE

International Conference on Automated Software Engineering, ASE 2018, pages 385–396. ACM, 2018.

220 Zarina Kurbatova, Ivan Veselov, Yaroslav Golubev, and Timofey Bryksin. Recommendation of move method refactoring

using path-based rrepresentation of code. In Proceedings of the 4th International Workshop on Refactoring, IWoR 2020,

pages 315–322. ACM, 2020.

221 Tushar Sharma, Vasiliki Efstathiou, Panos Louridas, and Diomidis Spinellis. Code smell detection by deep direct-learning

and transfer-learning. Journal of Systems and Software, 176:110936, 2021.

222 Hui Liu, Jiahao Jin, Zhifeng Xu, Yanzhen Zou, Yifan Bu, and Lu Zhang. Deep learning based code smell detection. IEEE

Transactions on Software Engineering, 47(9):1811–1837, 2021.

223 Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444, 2015.

224 Xizhao Wang, Yanxia Zhao, and Farhad Pourpanah. Recent advances in deep learning. International Journal of Machine

Learning and Cybernetics, 11:747–750, 2020.

225 Antoine Barbez, Foutse Khomh, and Yann-Gaël Guéhéneuc. In Deep Learning Anti-patterns from Code Metrics History,

ICSME 2019, pages 114–124. IEEE, 2019.

226 Dongjin Yu, Yihang Xu, Lehui Weng, Jie Chen, Xin Chen, and Quanxin Yang. In Detecting and Refactoring Feature Envy

based on Graph Neural Network, ISSRE 2022, pages 458–469. IEEE, 2022.

227 Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. Code2vec: Learning distributed representations of code. Pro-

ceedings of the ACM on Programming Languages, 3(POPL):40:1–40:29, 2019.

228 Di Cui, Siqi Wang, Yong Luo, Xingyu Li, Jie Dai, Lu Wang, and Qingshan Li. RMove: Recommending move method refac-

toring opportunities using structural and semantic representations of code. In Proceedings of the 2022 IEEE International

Conference on Software Maintenance and Evolution, ICSME 2022, pages 281–292. IEEE, 2022.

229 Rahul Yedida and Tim Menzies. On the value of oversampling for deep learning in software defect prediction. IEEE

Transactions on Software Engineering, 48(8):3103–3116, 2022.

230 Rahul Yedida and Tim Menzies. How to improve deep learning for software analytics: (a case study with code smell

detection). In Proceedings of the 19th International Conference on Mining Software Repositories, MSR 2022, pages

156–166. ACM, 2022.

231 Hui Liu, Qiurong Liu, Yang Liu, and Zhouding Wang. Identifying renaming opportunities by expanding conducted rename

refactorings. IEEE Transactions on Software Engineering, 41(9):887–900, 2015.

232 Jiahui Liang, Weiqin Zou, Jingxuan Zhang, Zhiqiu Huang, and Chenxing Sun. A deep method renaming prediction and

refinement approach for Java projects. In Proceedings of the 21st International Conference on Software Quality, Reliability

and Security), QRS 2021, pages 404–413. IEEE, 2021.

233 Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers

for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association

for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, pages 4171–4186. ACL, 2019.

234 Sara Rosenthal, Noura Farra, and Preslav Nakov. Semeval-2017 task 4: Sentiment analysis in twitter. In Proceedings of

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 82

the 11th International Workshop on Semantic Evaluation, SemEval 2017, pages 502–518. ACL, 2017.

235 Kui Liu, Dongsun Kim, Tegawendé F Bissyandé, Taeyoung Kim, Kisub Kim, Anil Koyuncu, Suntae Kim, and Yves Le Traon.

Learning to spot and refactor inconsistent method names. In Proceedings of the 41st International Conference on Software

Engineering, ICSE 2019, pages 1–12. IEEE, 2019.

236 Quoc Le and Tomas Mikolov. Distributed representations of sentences and documents. In Proceedings of the 31st Interna-

tional Conference on Machine Learning, PMLR 2014, pages 1188–1196. IMLS, 2014.

237 Michele Tufano, Jevgenija Pantiuchina, Cody Watson, Gabriele Bavota, and Denys Poshyvanyk. On learning meaningful

code changes via neural machine translation. In Proceedings of the 41st International Conference on Software Engineering,

ICSE 2019, Montreal, QC, Canada, May 25-31, 2019, pages 25–36. IEEE / ACM, 2019.

238 Ally S Nyamawe, Hui Liu, Nan Niu, Qasim Umer, and Zhendong Niu. Feature requests-based recommendation of software

refactorings. Empirical Software Engineering, 25:4315–4347, 2020.

239 Eman Abdullah AlOmar, Anton Ivanov, Zarina Kurbatova, Yaroslav Golubev, Mohamed Wiem Mkaouer, Ali Ouni, Timofey

Bryksin, Le Nguyen, Amit Kini, and Aditya Thakur. Just-in-time code duplicates extraction. Information and Software

Technology, 158:107169, 2023.

240 Chi Xiaye, Liu Hui, Li Guangjie, Wang Weixiao, Xia Yunni, Jiang Yanjie, Zhang Yuxia, and Ji Weixing. An automated

approach to extracting local variables. In Proceedings of the 31th ACM Joint European Software Engineering Conference

and Symposium on the Foundations of Software Engineering, ESEC/FSE 2023, San Francisco, California, USA, 2023.

ACM.

241 Utkarsh Desai, Sambaran Bandyopadhyay, and Srikanth Tamilselvam. Graph neural network to dilute outliers for refactoring

monolith application. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35 of AAAI 2021, pages

72–80, 2021.

242 Lech Madeyski and Tomasz Lewowski. Mlcq: Industry-relevant code smell data set. In Proceedings of the 24th Evaluation

and Assessment in Software Engineering, EASE 2010, pages 342–347. ACM, 2020.

243 Liu Bo, Liu Hui, Li Guangjie, Niu Nan, Xu Zimao, Wang Yifan, Xia Yunni, Zhang Yuxia, and Jiang Yanjie. Deep learning

based feature envy detection boosted by real-world examples. In Proceedings of the 31th ACM Joint European Software

Engineering Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE 2023, San Francisco,

California, USA, 2023. ACM.

244 Nikolaos Tsantalis, Ameya Ketkar, and Danny Dig. RefactoringMiner 2.0. IEEE Transactions on Software Engineering,

48(3):930–950, 2022.

245 Danilo Silva, João Silva, Gustavo Jansen De Souza Santos, Ricardo Terra, and Marco Tulio O Valente. RefDiff 2.0: A

multi-language refactoring detection tool. IEEE Transactions on Software Engineering, 47(12):2786–2802, 2021.

246 Miryung Kim, Matthew Gee, Alex Loh, and Napol Rachatasumrit. Ref-Finder: A refactoring reconstruction tool based on

logic query templates. In Proceedings of the 18th ACM SIGSOFT International Symposium on Foundations of Software

Engineering, FSE 2010, pages 371–372, Santa Fe, NM, USA, 2010. ACM.

247 Xin Yin, Chongyang Shi, and Shuxin Zhao. Local and global feature based explainable feature envy detection. In 2021

IEEE 45th Annual Computers, Software, and Applications Conference, COMPSAC 2021, pages 942–951. IEEE, 2021.

248 Liu Bo, Liu Hui, Li Guangjie, Niu Nan, Zhang Yuxia, Li Guangjie, and Jiang Yanjie. Automated software entity matching

between successive versions. In Proceedings of the 38th IEEE/ACM International Conference on Automated Software

Engineering, ASE 2023, Kirchberg, Luxembourg, 2023. IEEE.

249 Jeffrey Svajlenko, Judith F. Islam, Iman Keivanloo, Chanchal K. Roy, and Mohammad Mamun Mia. Towards a big data

curated benchmark of inter-project code clones. In 2014 IEEE International Conference on Software Maintenance and

Evolution, pages 476–480, 2014.

250 Muslim Chochlov, Gul Aftab Ahmed, James Vincent Patten, Guoxian Lu, Wei Hou, David Gregg, and Jim Buckley. Using a

nearest-neighbour, bert-based approach for scalable clone detection. In 2022 IEEE International Conference on Software

Maintenance and Evolution (ICSME), pages 582–591, 2022.

251 Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal K. Roy, and Cristina V. Lopes. Sourcerercc: Scaling code clone

detection to big-code. ICSE ’16, page 1157–1168, New York, NY, USA, 2016. Association for Computing Machinery.

252 Saad Arshad, Shamsa Abid, and Shafay Shamail. Codebert for code clone detection: A replication study. In 2022 IEEE

16th International Workshop on Software Clones (IWSC), pages 39–45, 2022.

253 Nikita Mehrotra, Navdha Agarwal, Piyush Gupta, Saket Anand, David Lo, and Rahul Purandare. Modeling functional

similarity in source code with graph-based siamese networks. IEEE Transactions on Software Engineering, 48(10):3771–

3789, 2022.

254 Hao Yu, Wing Lam, Long Chen, Ge Li, Tao Xie, and Qianxiang Wang. Neural detection of semantic code clones via

tree-based convolution. In 2019 IEEE/ACM 27th International Conference on Program Comprehension (ICPC), pages

70–80, 2019.

255 Zhipeng Xue, Zhijie Jiang, Chenlin Huang, Rulin Xu, Xiangbing Huang, and Liumin Hu. Seed: Semantic graph based deep

detection for type-4 clone. In Gilles Perrouin, Naouel Moha, and Abdelhak-Djamel Seriai, editors, Reuse and Software

Quality, pages 120–137, Cham, 2022. Springer International Publishing.

256 Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, Kaixuan Wang, and Xudong Liu. A novel neural source code rep-

resentation based on abstract syntax tree. In 2019 IEEE/ACM 41st International Conference on Software Engineering

(ICSE), pages 783–794, 2019.

257 S. Karthik and B. Rajdeepa. A collaborative method for code clone detection using a deep learning model. Advances in

Engineering Software, 174:103327, 2022.

258 Ming Wu, Pengcheng Wang, Kangqi Yin, Haoyu Cheng, Yun Xu, and Chanchal K. Roy. Lvmapper: A large-variance clone

detector using sequencing alignment approach. IEEE Access, 8:27986–27997, 2020.

259 Wei Hua, Yulei Sui, Yao Wan, Guangzhong Liu, and Guandong Xu. Fcca: Hybrid code representation for functional clone

detection using attention networks. IEEE Transactions on Reliability, 70(1):304–318, 2021.

260 Young-Bin Jo, Jihyun Lee, and Cheol-Jung Yoo. Two-pass technique for clone detection and type classification using

tree-based convolution neural network. Applied Sciences, 11(14), 2021.

261 Bingzhuo Li, Chunyang Ye, Shouyang Guan, and Hui Zhou. Semantic code clone detection via event embedding tree and

gat network. In 2020 IEEE 20th International Conference on Software Quality, Reliability and Security (QRS), pages

382–393, 2020.

262 Liuqing Li, He Feng, Wenjie Zhuang, Na Meng, and Barbara Ryder. Cclearner: A deep learning-based clone detection

approach. In 2017 IEEE International Conference on Software Maintenance and Evolution (ICSME), pages 249–260,

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 83

2017.

263 Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu. Deckard: Scalable and accurate tree-based

detection of code clones. In 29th International Conference on Software Engineering (ICSE’07), pages 96–105, 2007.

264 Jeffrey Svajlenko and Chanchal K. Roy. Fast and flexible large-scale clone detection with cloneworks. In 2017 IEEE/ACM

39th International Conference on Software Engineering Companion (ICSE-C), pages 27–30, 2017.

265 Aiping Zhang, Kui Liu, Liming Fang, Qianjun Liu, Xinyu Yun, and Shouling Ji. Learn to align: A code alignment network

for code clone detection. In 2021 28th Asia-Pacific Software Engineering Conference (APSEC), pages 1–11, 2021.

266 Martin White, Michele Tufano, Christopher Vendome, and Denys Poshyvanyk. Deep learning code fragments for code clone

detection. In Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering, ASE

’16, page 87–98, New York, NY, USA, 2016. Association for Computing Machinery.

267 Hui-Hui Wei and Ming Li. Supervised deep features for software functional clone detection by exploiting lexical and

syntactical information in source code. In Proceedings of the 26th International Joint Conference on Artificial Intelligence,

IJCAI’17, page 3034–3040. AAAI Press, 2017.

268 Gang Zhao and Jeff Huang. Deepsim: Deep learning code functional similarity. ESEC/FSE 2018, page 141–151, New York,

NY, USA, 2018. Association for Computing Machinery.

269 Dong Kwan KIM. A deep neural network-based approach to finding similar code segments. IEICE Transactions on

Information and Systems, E103.D(4):874–878, 2020.

270 Chanchal K. Roy and James R. Cordy. Nicad: Accurate detection of near-miss intentional clones using flexible pretty-printing

and code normalization. In 2008 16th IEEE International Conference on Program Comprehension, pages 172–181, 2008.

271 Yueming Wu, Deqing Zou, Shihan Dou, Siru Yang, Wei Yang, Feng Cheng, Hong Liang, and Hai Jin. Scdetector: Software

functional clone detection based on semantic tokens analysis. In 2020 35th IEEE/ACM International Conference on

Automated Software Engineering (ASE), pages 821–833, 2020.

272 Chenhui Feng, Tao Wang, Yue Yu, Yang Zhang, Yanzhi Zhang, and Huaimin Wang. Sia-rae: A siamese network based on

recursive autoencoder for effective clone detection. In 2020 27th Asia-Pacific Software Engineering Conference (APSEC),

pages 238–246, 2020.

273 Jie Zeng, Kerong Ben, Xiaowei Li, and Xian Zhang. Fast code clone detection based on weighted recursive autoencoders.

IEEE Access, 7:125062–125078, 2019.

274 Yuan Yuan, Weiqiang Kong, Gang Hou, Yan Hu, Masahiko Watanabe, and Akira Fukuda. From local to global semantic

clone detection. In 2019 6th International Conference on Dependable Systems and Their Applications (DSA), pages

13–24, 2020.

275 Wenhan Wang, Ge Li, Bo Ma, Xin Xia, and Zhi Jin. Detecting code clones with graph neural network and flow-augmented

abstract syntax tree. In 2020 IEEE 27th International Conference on Software Analysis, Evolution and Reengineering

(SANER), pages 261–271, 2020.

276 Chunrong Fang, Zixi Liu, Yangyang Shi, Jeff Huang, and Qingkai Shi. Functional code clone detection with syntax and

semantics fusion learning. In Proceedings of the 29th ACM SIGSOFT International Symposium on Software Testing and

Analysis, ISSTA 2020, page 516–527, New York, NY, USA, 2020. Association for Computing Machinery.

277 Chenkai Guo, Hui Yang, Dengrong Huang, Jianwen Zhang, Naipeng Dong, Jing Xu, and Jingwen Zhu. Review sharing via

deep semi-supervised code clone detection. IEEE Access, 8:24948–24965, 2020.

278 Vaibhav Saini, Farima Farmahinifarahani, Yadong Lu, Pierre Baldi, and Cristina V. Lopes. Oreo: Detection of clones in the

twilight zone. ESEC/FSE 2018, page 354–365, New York, NY, USA, 2018. Association for Computing Machinery.

279 Yao Meng and Long Liu. A deep learning approach for a source code detection model using self-attention. Complexity,

2020:24948–24965, 2020.

280 Yan Ya Zhang and Ming Li. Find me if you can: Deep software clone detection by exploiting the contest between the

plagiarist and the detector. volume 33, pages 5813–5820, 2019.

281 Lutz Büch and Artur Andrzejak. Learning-based recursive aggregation of abstract syntax trees for code clone detection. In

2019 IEEE 26th International Conference on Software Analysis, Evolution and Reengineering (SANER), pages 95–104,

2019.

282 Cong Wang, Jian Gao, Yu Jiang, Zhenchang Xing, Huafeng Zhang, Weiliang Yin, Ming Gu, and Jiaguang Sun. Go-clone:

Graph-embedding based clone detector for golang. In Proceedings of the 28th ACM SIGSOFT International Symposium

on Software Testing and Analysis, ISSTA 2019, page 374–377, New York, NY, USA, 2019. Association for Computing

Machinery.

283 Heyuan Shi, Runzhe Wang, Ying Fu, Yu Jiang, Jian Dong, Kun Tang, and Jiaguang Sun. Vulnerable code clone detection for

operating system through correlation-induced learning. IEEE Transactions on Industrial Informatics, 15(12):6551–6559,

2019.

284 Seulbae Kim, Seunghoon Woo, Heejo Lee, and Hakjoo Oh. Vuddy: A scalable approach for vulnerable code clone discovery.

In 2017 IEEE Symposium on Security and Privacy (SP), pages 595–614, 2017.

285 Abdullah Sheneamer. Ccdlc detection framework-combining clustering with deep learning classification for semantic clones.

In 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), pages 701–706, 2018.

286 Hui-Hui Wei and Ming Li. Positive and unlabeled learning for detecting software functional clones with adversarial training.

In Proceedings of the 27th International Joint Conference on Artificial Intelligence, IJCAI’18, page 2840–2846. AAAI

Press, 2018.

287 Abdullah Sheneamer and Jugal Kalita. Semantic clone detection using machine learning. In 2016 15th IEEE International

Conference on Machine Learning and Applications (ICMLA), pages 1024–1028, 2016.

288 Jing Kai Siow, Shangqing Liu, Xiaofei Xie, Guozhu Meng, and Yang Liu. Learning program semantics with code represen-

tations: An empirical study. In 2022 IEEE International Conference on Software Analysis, Evolution and Reengineering

(SANER), pages 554–565, 2022.

289 Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin White, and Denys Poshyvanyk. Deep

learning similarities from different representations of source code. In 2018 IEEE/ACM 15th International Conference on

Mining Software Repositories (MSR), pages 542–553, 2018.

290 Deze Wang, Zhouyang Jia, Shanshan Li, Yue Yu, Yun Xiong, Wei Dong, and Xiangke Liao. Bridging pre-trained models

and downstream tasks for source code understanding. In 2022 IEEE/ACM 44th International Conference on Software

Engineering (ICSE), pages 287–298, 2022.

291 S. Karakatič, A. Miloševič, and T Heričko. Software system comparison with semantic source code embeddings. Empirical

Software Engineering, 27(70), 2022.

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 84

292 Nghi D. Q. Bui, Yijun Yu, and Lingxiao Jiang. Infercode: Self-supervised learning of code representations by predicting

subtrees. In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE), pages 1186–1197, 2021.

293 Qiong Wu, Xue Jiang, Zhuoran Zheng, Xuejian Gao, Chen Lyu, and Lei Lyu. Code representation based on hybrid graph

modelling. In Teddy Mantoro, Minho Lee, Media Anugerah Ayu, Kok Wai Wong, and Achmad Nizar Hidayanto, editors,

Neural Information Processing, pages 298–306, Cham, 2021. Springer International Publishing.

294 Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. Convolutional neural networks over tree structures for programming

language processing. AAAI’16, page 1287–1293. AAAI Press, 2016.

295 Long Chen, Wei Ye, and Shikun Zhang. Capturing source code semantics via tree-based convolution over api-enhanced ast.

In Proceedings of the 16th ACM International Conference on Computing Frontiers, CF ’19, page 174–182, New York, NY,

USA, 2019. Association for Computing Machinery.

296 Yi Gao, Zan Wang, Shuang Liu, Lin Yang, Wei Sang, and Yuanfang Cai. Teccd: A tree embedding approach for code clone

detection. In 2019 IEEE International Conference on Software Maintenance and Evolution (ICSME), pages 145–156,

2019.

297 Pengcheng Wang, Jeffrey Svajlenko, Yanzhao Wu, Yun Xu, and Chanchal K. Roy. Ccaligner: A token based large-gap clone

detector. In 2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE), pages 1066–1077, 2018.

298 Ricardo Terra, Luis Fernando Miranda, Marco Tulio Valente, and Roberto S. Bigonha. Qualitas.class corpus: A compiled

version of the qualitas corpus. SIGSOFT Softw. Eng. Notes, 38(5):1–4, aug 2013.

299 Mohammad A. Yahya and Dae-Kyoo Kim. Clcd-i: Cross-language clone detection by using deep learning with infercode.

Computers, 12(1), 2023.

300 Kawser Wazed Nafi, Tonny Shekha Kar, Banani Roy, Chanchal K. Roy, and Kevin A. Schneider. Clcdsa: Cross language

code clone detection using syntactical features and api documentation. In 2019 34th IEEE/ACM International Conference

on Automated Software Engineering (ASE), pages 1026–1037, 2019.

301 Nghi D. Q. Bui, Yijun Yu, and Lingxiao Jiang. Bilateral dependency neural networks for cross-language algorithm clas-

sification. In 2019 IEEE 26th International Conference on Software Analysis, Evolution and Reengineering (SANER),

pages 422–433, 2019.

302 Kesu Wang, Meng Yan, He Zhang, and Haibo Hu. Unified abstract syntax tree representation learning for cross-language

program classification. In 2022 IEEE/ACM 30th International Conference on Program Comprehension (ICPC), pages

390–400, 2022.

303 Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Säckinger, and Roopak Shah. Signature verification using a ”siamese”

time delay neural network. In Proceedings of the 6th International Conference on Neural Information Processing Systems,

NIPS’93, page 737–744, San Francisco, CA, USA, 1993. Morgan Kaufmann Publishers Inc.

304 Tijana Vislavski, Gordana Rakić, Nicolás Cardozo, and Zoran Budimac. Licca: A tool for cross-language clone detection. In

2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengineering (SANER), pages 512–516,

2018.

305 Xiao Cheng, Zhiming Peng, Lingxiao Jiang, Hao Zhong, Haibo Yu, and Jianjun Zhao. Mining revision histories to detect

cross-language clones without intermediates. In 2016 31st IEEE/ACM International Conference on Automated Software

Engineering (ASE), pages 696–701, 2016.

306 Hongfa Xue, Guru Venkataramani, and Tian Lan. Clone-slicer: Detecting domain specific binary code clones through

program slicing. In Proceedings of the 2018 Workshop on Forming an Ecosystem Around Software Transformation,

FEAST ’18, page 27–33, New York, NY, USA, 2018. Association for Computing Machinery.

307 Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, and Dawn Song. Neural network-based graph embedding for cross-

platform binary code similarity detection. CCS ’17, page 363–376, New York, NY, USA, 2017. Association for Computing

Machinery.

308 Niccolò Marastoni, Roberto Giacobazzi, and Mila Dalla Preda. A deep learning approach to program similarity. In

Proceedings of the 1st International Workshop on Machine Learning and Software Engineering in Symbiosis, MASES

2018, page 26–35, New York, NY, USA, 2018. Association for Computing Machinery.

309 Hongfa Xue, Guru Venkataramani, and Tian Lan. Clone-hunter: Accelerated bound checks elimination via binary code clone

detection. In Proceedings of the 2nd ACM SIGPLAN International Workshop on Machine Learning and Programming

Languages, MAPL 2018, page 11–19, New York, NY, USA, 2018. Association for Computing Machinery.

310 Qian Feng, Rundong Zhou, Chengcheng Xu, Yao Cheng, Brian Testa, and Heng Yin. Scalable graph-based bug search for

firmware images. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security,

CCS ’16, page 480–491, New York, NY, USA, 2016. Association for Computing Machinery.

311 Golam Mostaeen, Jeffrey Svajlenko, Banani Roy, Chanchal K. Roy, and Kevin A. Schneider. On the use of machine learning

techniques towards the design of cloud based automatic code clone validation tools. In 2018 IEEE 18th International

Working Conference on Source Code Analysis and Manipulation (SCAM), pages 155–164, 2018.

312 Vaibhav Saini, Farima Farmahinifarahani, Yadong Lu, Di Yang, Pedro Martins, Hitesh Sajnani, Pierre Baldi, and Cristina V.

Lopes. Towards automating precision studies of clone detectors. In 2019 IEEE/ACM 41st International Conference on

Software Engineering (ICSE), pages 49–59, 2019.

313 Chenyao Liu, Zeqi Lin, Jian-Guang Lou, Lijie Wen, and Dongmei Zhang. Can neural clone detection generalize to unseen

functionalities? In 2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE), pages

617–629, 2021.

314 Hao Yu, Xing Hu, Ge Li, Ying Li, Qianxiang Wang, and Tao Xie. Assessing and improving an evaluation dataset for

detecting semantic code clones via deep learning. ACM Trans. Softw. Eng. Methodol., 31(4), jul 2022.

315 Jens Krinke and Chaiyong Ragkhitwetsagul. Bigclonebench considered harmful for machine learning. In 2022 IEEE 16th

International Workshop on Software Clones (IWSC), pages 1–7, 2022.

316 Farouq Al-Omari, Chanchal K. Roy, and Tonghao Chen. Semanticclonebench: A semantic code clone benchmark using

crowd-source knowledge. In 2020 IEEE 14th International Workshop on Software Clones (IWSC), pages 57–63, 2020.

317 Marius Kamp, Patrick Kreutzer, and Michael Philippsen. Sesame: A data set of semantically similar java methods. In 2019

IEEE/ACM 16th International Conference on Mining Software Repositories (MSR), pages 529–533, 2019.

318 Xinli Yang, David Lo, Xin Xia, Yun Zhang, and Jianling Sun. Deep learning for just-in-time defect prediction. In 2015

IEEE International Conference on Software Quality, Reliability and Security, pages 17–26. IEEE, 2015.

319 Anh Viet Phan, Minh Le Nguyen, and Lam Thu Bui. Convolutional neural networks over control flow graphs for software

defect prediction. In 2017 IEEE 29th International Conference on Tools with Artificial Intelligence (ICTAI), pages 45–52,

2017.

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 85

320 Jian Li, Pinjia He, Jieming Zhu, and Michael R. Lyu. Software defect prediction via convolutional neural network. In 2017

IEEE International Conference on Software Quality, Reliability and Security (QRS), pages 318–328, 2017.

321 Xuan Huo, Yang Yang, Ming Li, and De-Chuan Zhan. Learning semantic features for software defect prediction by code

comments embedding. In 2018 IEEE international conference on data mining (ICDM), pages 1049–1054. IEEE, 2018.

322 Yibin Liu, Yanhui Li, Jianbo Guo, Yuming Zhou, and Baowen Xu. Connecting software metrics across versions to predict

defects. In 2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengineering (SANER),

pages 232–243, 2018.

323 Haonan Tong, Bin Liu, and Shihai Wang. Software defect prediction using stacked denoising autoencoders and two-stage

ensemble learning. Inf. Softw. Technol., 96(C):94–111, apr 2018.

324 Shaojian Qiu, Lu Lu, Ziyi Cai, and Siyu Jiang. Cross-project defect prediction via transferable deep learning-generated and

handcrafted features. In International Conference on Software Engineering and Knowledge Engineering, 2019.

325 Thong Hoang, Hoa Khanh Dam, Yasutaka Kamei, David Lo, and Naoyasu Ubayashi. Deepjit: An end-to-end deep learning

framework for just-in-time defect prediction. In 2019 IEEE/ACM 16th International Conference on Mining Software

Repositories (MSR), pages 34–45, 2019.

326 Tianchi Zhou, Xiaobing Sun, Xin Xia, Bin Li, and Xiang Chen. Improving defect prediction with deep forest. Inf. Softw.

Technol., 114(C):204–216, oct 2019.

327 Zhou Xu, Shuai Li, Jun Xu, Jin Liu, Xiapu Luo, Yifeng Zhang, Tao Zhang, Jacky Keung, and Yutian Tang. Ldfr: Learning

deep feature representation for software defect prediction. J. Syst. Softw., 158(C), dec 2019.

328 Hamza Turabieh, Majdi Mafarja, and Xiaodong Li. Iterated feature selection algorithms with layered recurrent neural

network for software fault prediction. Expert Syst. Appl., 122(C):27–42, may 2019.

329 Hoa Khanh Dam, Trang Pham, Shien Wee Ng, Truyen Tran, John Grundy, Aditya Ghose, Taeksu Kim, and Chul-Joo Kim.

Lessons learned from using a deep tree-based model for software defect prediction in practice. In Proceedings of the 16th

International Conference on Mining Software Repositories, MSR ’19, page 46–57. IEEE Press, 2019.

330 Hao Li, Xiaohong Li, Xiang Chen, Xiaofei Xie, Yanzhou Mu, and Zhiyong Feng. Cross-project defect prediction via

asttoken2vec and blstm-based neural network. In 2019 International Joint Conference on Neural Networks (IJCNN),

pages 1–8, 2019.

331 Jinyin Chen, Keke Hu, Yue Yu, Zhuangzhi Chen, Qi Xuan, Yi Liu, and Vladimir Filkov. Software visualization and deep

transfer learning for effective software defect prediction. In Proceedings of the ACM/IEEE 42nd international conference

on software engineering, pages 578–589, 2020.

332 Kun Zhu, Nana Zhang, Shi Ying, and Dandan Zhu. Within-project and cross-project just-in-time defect prediction based

on denoising autoencoder and convolutional neural network. IET Software, 14(3):185–195, 2020.

333 Song Wang, Taiyue Liu, Jaechang Nam, and Lin Tan. Deep semantic feature learning for software defect prediction. IEEE

Transactions on Software Engineering, 46(12):1267–1293, 2020.

334 Jiehan Deng, Lu Lu, and Shaojian Qiu. Software defect prediction via lstm. IET software, 14(4):443–450, 2020.

335 Ke Shi, Yang Lu, Jingfei Chang, and Zhen Wei. Pathpair2vec: An ast path pair-based code representation method for defect

prediction. Journal of Computer Languages, 59:100979, 2020.

336 Amirabbas Majd, Mojtaba Vahidi-Asl, Alireza Khalilian, Pooria Poorsarvi-Tehrani, and Hassan Haghighi. Sldeep:

Statement-level software defect prediction using deep-learning model on static code features. Expert Syst. Appl., 147(C),

jun 2020.

337 Ming Wen, Rongxin Wu, and Shing-Chi Cheung. How well do change sequences predict defects? sequence learning from

software changes. IEEE Transactions on Software Engineering, 46(11):1155–1175, 2018.

338 Ke Shi, Yang Lu, Guangliang Liu, Zhenchun Wei, and Jingfei Chang. Mpt-embedding: an unsupervised representation

learning of code for software defect prediction. Journal of Software: Evolution and Process, 33(4):e2330, 2021.

339 Zhou Xu, Kunsong Zhao, Tao Zhang, Chunlei Fu, Meng Yan, Zhiwen Xie, Xiaohong Zhang, and Gemma Catolino. Effort-

aware just-in-time bug prediction for mobile apps via cross-triplet deep feature embedding. IEEE Transactions on Relia-

bility, 71(1):204–220, 2022.

340 Jiaxi Xu, Fei Wang, and Jun Ai. Defect prediction with semantics and context features of codes based on graph representation

learning. IEEE Transactions on Reliability, 70(2):613–625, 2020.

341 Cheng Zeng, Chun Ying Zhou, Sheng Kai Lv, Peng He, and Jie Huang. Gcn2defect : Graph convolutional networks

for smotetomek-based software defect prediction. In 2021 IEEE 32nd International Symposium on Software Reliability

Engineering (ISSRE), pages 69–79, 2021.

342 Jiaxi Xu, Jun Ai, Jingyu Liu, and Tao Shi. Acgdp: An augmented code graph-based system for software defect prediction.

IEEE Transactions on Reliability, 71(2):850–864, 2022.

343 Hao Wang, Weiyuan Zhuang, and Xiaofang Zhang. Software defect prediction based on gated hierarchical lstms. IEEE

Transactions on Reliability, 70(2):711–727, 2021.

344 Quanyi Zou, Lu Lu, Zhanyu Yang, Xiaowei Gu, and Shaojian Qiu. Joint feature representation learning and progressive

distribution matching for cross-project defect prediction. Information and Software Technology, 137:106588, 2021.

345 Nana Zhang, Shi Ying, Kun Zhu, and Dandan Zhu. Software defect prediction based on stacked sparse denoising autoencoders

and enhanced extreme learning machine. IET Software, 16(1):29–47, 2022.

346 Md Nasir Uddin, Bixin Li, Zafar Ali, Pavlos Kefalas, Inayat Khan, and Islam Zada. Software defect prediction employing

bilstm and bert-based semantic feature. Soft Computing, 26(16):7877–7891, 2022.

347 Pasquale Ardimento, Lerina Aversano, Mario Luca Bernardi, Marta Cimitile, and Martina Iammarino. Just-in-time software

defect prediction using deep temporal convolutional networks. Neural Computing and Applications, 34(5):3981–4001, 2022.

348 Chanathip Pornprasit and Chakkrit Kla Tantithamthavorn. Deeplinedp: Towards a deep learning approach for line-level

defect prediction. IEEE Transactions on Software Engineering, 49(1):84–98, 2023.

349 Shaojian Qiu, Huihao Huang, Wenchao Jiang, Fanlong Zhang, and Weilin Zhou. Defect prediction via tree-based encoding

with hybrid granularity for software sustainability. IEEE Transactions on Sustainable Computing, pages 1–12, 2023.

350 Stephen C Johnson. Lint, a C program checker. 1977.

351 David Hovemeyer and William Pugh. Finding bugs is easy. 2004.

352 Facebook. Infer: A tool to detect bugs in java and c/c++/objective-c code before it ships, 2015.

353 Alessandro Orso and Gregg Rothermel. Software testing: a research travelogue (2000–2014). 2014.

354 Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. Klee: Unassisted and automatic generation of high-coverage tests

for complex systems programs. 2008.

355 Luke Nelson, Helgi Sigurbjarnarson, Kaiyuan Zhang, Dylan Johnson, James Bornholt, Emina Torlak, and Xi Wang. Hyper-

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 86

kernel: Push-button verification of an os kernel. 2017.

356 Xavier Leroy. Formal verification of a realistic compiler. 2009.

357 Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip Derrin, Dhammika Elkaduwe, Kai

Engelhardt, Rafal Kolanski, Michael Norrish, et al. seL4: Formal verification of an OS kernel. 2009.

358 Vijay D’silva, Daniel Kroening, and Georg Weissenbacher. A survey of automated techniques for formal software verification.

2008.

359 Donald E. Knuth. The Art of Computer Programming, Volume 1 (3rd Ed.): Fundamental Algorithms. 1997.

360 Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li, Xiapu Luo, David Lo, John Grundy, and Haoyu Wang.

Large language models for software engineering: A systematic literature review. 2023.

361 Angela Fan, Beliz Gokkaya, Mark Harman, Mitya Lyubarskiy, Shubho Sengupta, Shin Yoo, and Jie M Zhang. Large language

models for software engineering: Survey and open problems. 2023.

362 David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian Schrittwieser,

Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of go with deep neural networks and

tree search. 2016.

363 Shuofei Qiao, Yixin Ou, Ningyu Zhang, Xiang Chen, Yunzhi Yao, Shumin Deng, Chuanqi Tan, Fei Huang, and Huajun Chen.

Reasoning with language model prompting: A survey. 2022.

364 Jie Huang and Kevin Chen-Chuan Chang. Towards reasoning in large language models: A survey. 2022.

365 Harold Abelson and Gerald Jay Sussman. Structure and interpretation of computer programs. 1996.

366 Abram Hindle, Earl T. Barr, Mark Gabel, Zhendong Su, and Premkumar Devanbu. On the naturalness of software. 2016.

367 Guido Van Rossum, Barry Warsaw, and Nick Coghlan. PEP 8–style guide for python code. 2001.

368 Achut Reddy et al. Java coding style guide. 2000.

369 Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Benjamin Chelf. Bugs as deviant behavior: A general

approach to inferring errors in systems code. 2001.

370 Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan Zhou. CP-Miner: Finding copy-paste and related bugs in large-scale

software code. 2006.

371 OpenAI and GitHub. Github copilot: Your AI pair programmer, 2021.

372 Miltiadis Allamanis, Henry Jackson-Flux, and Marc Brockschmidt. Self-supervised bug detection and repair. In Advances

in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021,

NeurIPS 2021, December 6-14, 2021, virtual, pages 27865–27876, 2021.

373 Tushar Sharma, Maria Kechagia, Stefanos Georgiou, Rohit Tiwari, Indira Vats, Hadi Moazen, and Federica Sarro. A survey

on machine learning techniques for source code analysis. 2021.

374 Yanjie Jiang, Hui Liu, Yuxia Zhang, Weixing Ji, Hao Zhong, and Lu Zhang. Do bugs lead to unnaturalness of source code?

2022.

375 Henry Gordon Rice. Classes of recursively enumerable sets and their decision problems. 1953.

376 Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondřej Lhoták, J Nelson Amaral, Bor-Yuh Evan Chang, Samuel Z

Guyer, Uday P Khedker, Anders Møller, and Dimitrios Vardoulakis. In defense of soundiness: A manifesto. 2015.

377 Kihong Heo, Hakjoo Oh, and Hongseok Yang. Resource-aware program analysis via online abstraction coarsening. 2019.

378 Yoonseok Ko and Hakjoo Oh. Learning to boost disjunctive static bug-finders. 2023.

379 Haonan Li, Yu Hao, Yizhuo Zhai, and Zhiyun Qian. The hitchhiker’s guide to program analysis: A journey with large

language models. 2023.

380 Kwonsoo Chae, Hakjoo Oh, Kihong Heo, and Hongseok Yang. Automatically generating features for learning program

analysis heuristics for c-like languages. 2017.

381 Kihong Heo, Hakjoo Oh, and Kwangkeun Yi. Machine-learning-guided selectively unsound static analysis. 2017.

382 Minseok Jeon, Myungho Lee, and Hakjoo Oh. Learning graph-based heuristics for pointer analysis without handcrafting

application-specific features. 2020.

383 Sehun Jeong, Minseok Jeon, Sungdeok Cha, and Hakjoo Oh. Data-driven context-sensitivity for points-to analysis. 2017.

384 Jingxuan He, Gagandeep Singh, Markus Püschel, and Martin Vechev. Learning fast and precise numerical analysis. 2020.

385 Wojciech Zaremba and Ilya Sutskever. Learning to execute. 2014.

386 Rabee Sohail Malik, Jibesh Patra, and Michael Pradel. NL2Type: inferring javascript function types from natural language

information. 2019.

387 Kevin Jesse, Premkumar T Devanbu, and Toufique Ahmed. Learning type annotation: is big data enough? 2021.

388 Dongran Yu, Bo Yang, Dayou Liu, Hui Wang, and Shirui Pan. A survey on neural-symbolic learning systems. 2023.

389 Wenguan Wang and Yi Yang. Towards data-and knowledge-driven artificial intelligence: A survey on neuro-symbolic

computing. 2022.

390 Dongdong She, Kexin Pei, Dave Epstein, Junfeng Yang, Baishakhi Ray, and Suman Jana. Neuzz: Efficient fuzzing with

neural program smoothing. In 2019 IEEE Symposium on Security and Privacy (SP), pages 803–817. IEEE, 2019.

391 Dongdong She, Rahul Krishna, Lu Yan, Suman Jana, and Baishakhi Ray. MTFuzz: fuzzing with a multi-task neural

network. In Proceedings of the 28th ACM joint meeting on European software engineering conference and symposium on

the foundations of software engineering, pages 737–749, 2020.

392 Mingyuan Wu, Ling Jiang, Jiahong Xiang, Yuqun Zhang, Guowei Yang, Huixin Ma, Sen Nie, Shi Wu, Heming Cui, and Ling-

ming Zhang. Evaluating and improving neural program-smoothing-based fuzzing. In Proceedings of the 44th International

Conference on Software Engineering, pages 847–858, 2022.

393 Maria-Irina Nicolae, Max Eisele, and Andreas Zeller. Revisiting neural program smoothing for fuzzing. 2023.

394 Andreas Zeller. Mining specifications: A roadmap. 2011.

395 Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy Vyukov. AddressSanitizer: A fast address

sanity checker. 2012.

396 Konstantin Serebryany and Timur Iskhodzhanov. ThreadSanitizer: data race detection in practice. 2009.

397 Daniel Jackson. Software Abstractions: logic, language, and analysis. 2012.

398 Caroline Lemieux, Jeevana Priya Inala, Shuvendu K Lahiri, and Siddhartha Sen. CODAMOSA: Escaping coverage plateaus

in test generation with pre-trained large language models. 2023.

399 Ahmed Khanfir, Renzo Degiovanni, Mike Papadakis, and Yves Le Traon. Efficient mutation testing via pre-trained language

models. 2023.

400 Zhuangbin Chen, Jinyang Liu, Wenwei Gu, Yuxin Su, and Michael R Lyu. Experience report: Deep learning-based system

log analysis for anomaly detection. 2021.

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 87

401 Junjie Wang, Yuchao Huang, Chunyang Chen, Zhe Liu, Song Wang, and Qing Wang. Software testing with large language

model: Survey, landscape, and vision. 2023.

402 Vinicius HS Durelli, Rafael S Durelli, Simone S Borges, Andre T Endo, Marcelo M Eler, Diego RC Dias, and Marcelo P

Guimarães. Machine learning applied to software testing: A systematic mapping study. 2019.

403 Michele Tufano, Dawn Drain, Alexey Svyatkovskiy, Shao Kun Deng, and Neel Sundaresan. Unit test case generation with

transformers and focal context. 2020.

404 Cody Watson, Michele Tufano, Kevin Moran, Gabriele Bavota, and Denys Poshyvanyk. On learning meaningful assert

statements for unit test cases. 2020.

405 Michele Tufano, Dawn Drain, Alexey Svyatkovskiy, and Neel Sundaresan. Generating accurate assert statements for unit

test cases using pretrained transformers. 2022.

406 Arianna Blasi, Alessandra Gorla, Michael D Ernst, and Mauro Pezzè. Call Me Maybe: Using NLP to automatically generate

unit test cases respecting temporal constraints. 2022.

407 Elizabeth Dinella, Gabriel Ryan, Todd Mytkowicz, and Shuvendu K Lahiri. Toga: A neural method for test oracle generation.

2022.

408 Zhuokui Xie, Yinghao Chen, Chen Zhi, Shuiguang Deng, and Jianwei Yin. ChatUniTest: a chatgpt-based automated unit

test generation tool. 2023.

409 Saranya Alagarsamy, Chakkrit Tantithamthavorn, and Aldeida Aleti. A3Test: Assertion-augmented automated test case

generation. 2023.

410 Patric Feldmeier and Gordon Fraser. Neuroevolution-based generation of tests and oracles for games. 2022.

411 Max Schäfer, Sarah Nadi, Aryaz Eghbali, and Frank Tip. Adaptive test generation using a large language model. 2023.

412 Mohammed Latif Siddiq, Joanna Santos, Ridwanul Hasan Tanvir, Noshin Ulfat, Fahmid Al Rifat, and Vinicius Carvalho

Lopes. Exploring the effectiveness of large language models in generating unit tests. 2023.

413 Soneya Binta Hossain, Antonio Filieri, Matthew B Dwyer, Sebastian Elbaum, and Willem Visser. Neural-based test oracle

generation: A large-scale evaluation and lessons learned. 2023.

414 Zhongxin Liu, Kui Liu, Xin Xia, and Xiaohu Yang. Towards more realistic evaluation for neural test oracle generation.

2023.

415 Zhiqiang Yuan, Yiling Lou, Mingwei Liu, Shiji Ding, Kaixin Wang, Yixuan Chen, and Xin Peng. No more manual tests?

evaluating and improving chatgpt for unit test generation. 2023.

416 W Eric Wong, Joseph R Horgan, Saul London, and Hiralal Agrawal. A study of effective regression testing in practice. 1997.

417 Shin Yoo and Mark Harman. Regression testing minimization, selection and prioritization: a survey. 2012.

418 Valentin JM Manès, HyungSeok Han, Choongwoo Han, Sang Kil Cha, Manuel Egele, Edward J Schwartz, and Maverick

Woo. The art, science, and engineering of fuzzing: A survey. 2019.

419 Xiaogang Zhu, Sheng Wen, Seyit Camtepe, and Yang Xiang. Fuzzing: a survey for roadmap. 2022.

420 Jun Li, Bodong Zhao, and Chao Zhang. Fuzzing: a survey. 2018.

421 Myungho Lee, Sooyoung Cha, and Hakjoo Oh. Learning seed-adaptive mutation strategies for greybox fuzzing. 2023.

422 Jinghan Wang, Chengyu Song, and Heng Yin. Reinforcement learning-based hierarchical seed scheduling for greybox fuzzing.

2021.

423 Yunchao Wang, Zehui Wu, Qiang Wei, and Qingxian Wang. Neufuzz: Efficient fuzzing with deep neural network. 2019.

424 Yinlin Deng, Chunqiu Steven Xia, Haoran Peng, Chenyuan Yang, and Lingming Zhang. Large language models are zero-shot

fuzzers: Fuzzing deep-learning libraries via large language models. 2023.

425 Yinlin Deng, Chunqiu Steven Xia, Chenyuan Yang, Shizhuo Dylan Zhang, Shujing Yang, and Lingming Zhang. Large

language models are edge-case fuzzers: Testing deep learning libraries via fuzzgpt. 2023.

426 Chenyuan Yang, Yinlin Deng, Runyu Lu, Jiayi Yao, Jiawei Liu, Reyhaneh Jabbarvand, and Lingming Zhang. White-box

compiler fuzzing empowered by large language models. 2023.

427 Chunqiu Steven Xia, Matteo Paltenghi, Jia Le Tian, Michael Pradel, and Lingming Zhang. Universal fuzzing via large

language models. 2023.

428 Guixin Ye, Zhanyong Tang, Shin Hwei Tan, Songfang Huang, Dingyi Fang, Xiaoyang Sun, Lizhong Bian, Haibo Wang, and

Zheng Wang. Automated conformance testing for javascript engines via deep compiler fuzzing. 2021.

429 Chris Cummins, Pavlos Petoumenos, Alastair Murray, and Hugh Leather. Compiler fuzzing through deep learning. 2018.

430 Mingmin Lin, Yingpei Zeng, and Yang Li. RegFuzz: A linear regression-based approach for seed scheduling in directed

fuzzing. 2023.

431 Ruijie Meng, Martin Mirchev, Marcel Böhme, and Abhik Roychoudhury. Large language model guided protocol fuzzing.

2024.

432 Jianzhong Su, Hong-Ning Dai, Lingjun Zhao, Zibin Zheng, and Xiapu Luo. Effectively generating vulnerable transaction

sequences in smart contracts with reinforcement learning-guided fuzzing. 2022.

433 Weisi Luo, Dong Chai, Xiaoyue Ruan, Jiang Wang, Chunrong Fang, and Zhenyu Chen. Graph-based fuzz testing for deep

learning inference engines. 2021.

434 Yuqi Chen, Christopher M Poskitt, Jun Sun, Sridhar Adepu, and Fan Zhang. Learning-guided network fuzzing for testing

cyber-physical system defences. 2019.

435 Ling Jiang, Hengchen Yuan, Mingyuan Wu, Lingming Zhang, and Yuqun Zhang. Evaluating and improving hybrid fuzzing.

2023.

436 Jingxuan He, Mislav Balunović, Nodar Ambroladze, Petar Tsankov, and Martin Vechev. Learning to fuzz from symbolic

execution with application to smart contracts. 2019.

437 Haoxiang Jia, Ming Wen, Zifan Xie, Xiaochen Guo, Rongxin Wu, Maolin Sun, Kang Chen, and Hai Jin. Detecting JVM

JIT compiler bugs via exploring two-dimensional input spaces. 2023.

438 Yan Zheng, Yi Liu, Xiaofei Xie, Yepang Liu, Lei Ma, Jianye Hao, and Yang Liu. Automatic web testing using curiosity-driven

reinforcement learning. 2021.

439 Shaohua Zhang, Shuang Liu, Jun Sun, Yuqi Chen, Wenzhi Huang, Jinyi Liu, Jian Liu, and Jianye Hao. FIGCPS: Effective

failure-inducing input generation for cyber-physical systems with deep reinforcement learning. 2021.

440 Zhe Liu, Chunyang Chen, Junjie Wang, Xing Che, Yuekai Huang, Jun Hu, and Qing Wang. Fill in the blank: Context-aware

automated text input generation for mobile GUI testing. 2023.

441 Faraz YazdaniBanafsheDaragh and Sam Malek. Deep GUI: Black-box GUI input generation with deep learning. 2021.

442 Sidong Feng, Mulong Xie, and Chunyang Chen. Efficiency matters: Speeding up automated testing with GUI rendering

inference. 2023.

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 88

443 Dezhi Ran, Hao Wang, Wenyu Wang, and Tao Xie. Badge: Prioritizing ui events with hierarchical multi-armed bandits for

automated ui testing. 2023.

444 Minxue Pan, An Huang, Guoxin Wang, Tian Zhang, and Xuandong Li. Reinforcement learning based curiosity-driven testing

of android applications. 2020.

445 Yixue Zhao, Saghar Talebipour, Kesina Baral, Hyojae Park, Leon Yee, Safwat Ali Khan, Yuriy Brun, Nenad Medvidović,

and Kevin Moran. Avgust: automating usage-based test generation from videos of app executions. 2022.

446 Xiaoke Wang and Lei Zhao. APICAD: Augmenting API misuse detection through specifications from code and documents.

2023.

447 Myeongsoo Kim, Davide Corradini, Saurabh Sinha, Alessandro Orso, Michele Pasqua, Rachel Tzoref-Brill, and Mariano

Ceccato. Enhancing REST API testing with NLP techniques. 2023.

448 Myeongsoo Kim, Saurabh Sinha, and Alessandro Orso. Adaptive REST API testing with reinforcement learning. 2023.

449 Tasniem Nasser Alyahya, Mohamed El Bachir Menai, and Hassan Mathkour. On the structure of the boolean satisfiability

problem: A survey. 2022.

450 Wenxuan Guo, Hui-Ling Zhen, Xijun Li, Wanqian Luo, Mingxuan Yuan, Yaohui Jin, and Junchi Yan. Machine learning

methods in solving the boolean satisfiability problem. 2023.

451 Thanassis Avgerinos, Alexandre Rebert, Sang Kil Cha, and David Brumley. Enhancing symbolic execution with veritesting.

2014.

452 Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and Irene Finocchi. A survey of symbolic execution

techniques. 2018.

453 Jingxuan He, Gishor Sivanrupan, Petar Tsankov, and Martin Vechev. Learning to explore paths for symbolic execution.

2021.

454 Sooyoung Cha and Hakjoo Oh. Concolic testing with adaptively changing search heuristics. 2019.

455 Sooyoung Cha, Seongjoon Hong, Junhee Lee, and Hakjoo Oh. Automatically generating search heuristics for concolic testing.

2018.

456 Tianqi Zhang, Yufeng Zhang, Zhenbang Chen, Ziqi Shuai, and Ji Wang. Efficient multiplex symbolic execution with adaptive

search strategy. 2020.

457 Sooyoung Cha and Hakjoo Oh. Making symbolic execution promising by learning aggressive state-pruning strategy. 2020.

458 Zhenbang Chen, Zehua Chen, Ziqi Shuai, Guofeng Zhang, Weiyu Pan, Yufeng Zhang, and Ji Wang. Synthesize solving

strategy for symbolic execution. 2021.

459 Sicheng Luo, Hui Xu, Yanxiang Bi, Xin Wang, and Yangfan Zhou. Boosting symbolic execution via constraint solving time

prediction (experience paper). 2021.

460 Sooyoung Cha, Myungho Lee, Seokhyun Lee, and Hakjoo Oh. SymTuner: maximizing the power of symbolic execution by

adaptively tuning external parameters. 2022.

461 Junjie Chen, Wenxiang Hu, Lingming Zhang, Dan Hao, Sarfraz Khurshid, and Lu Zhang. Learning to accelerate symbolic

execution via code transformation. 2018.

462 The Coq development team. The Coq proof assistant, 1984.

463 The Isabelle development team. Isabelle, 1986.

464 Lawrence C Paulson. Natural deduction as higher-order resolution. 1986.

465 Guillaume Lample, Timothee Lacroix, Marie-Anne Lachaux, Aurelien Rodriguez, Amaury Hayat, Thibaut Lavril, Gabriel

Ebner, and Xavier Martinet. Hypertree proof search for neural theorem proving. 2022.

466 Yuhuai Wu, Albert Qiaochu Jiang, Wenda Li, Markus Rabe, Charles Staats, Mateja Jamnik, and Christian Szegedy. Auto-

formalization with large language models. 2022.

467 Emily First and Yuriy Brun. Diversity-driven automated formal verification. 2022.

468 Kaiyu Yang, Aidan M Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad Godil, Ryan Prenger, and Anima

Anandkumar. LeanDojo: Theorem proving with retrieval-augmented language models. 2023.

469 Saikat Chakraborty, Shuvendu K Lahiri, Sarah Fakhoury, Madanlal Musuvathi, Akash Lal, Aseem Rastogi, Aditya

Senthilnathan, Rahul Sharma, and Nikhil Swamy. Ranking llm-generated loop invariants for program verification. 2023.

470 Sebastian Zimmeck, Ziqi Wang, Lieyong Zou, Roger Iyengar, Bin Liu, Florian Schaub, Shomir Wilson, Norman Sadeh,

Steven Bellovin, and Joel Reidenberg. Automated analysis of privacy requirements for mobile apps. In 2016 AAAI Fall

Symposium Series, 2016.

471 Afsaneh Mahanipour and Hossein Nezamabadi-Pour. Gsp: an automatic programming technique with gravitational search

algorithm. Applied Intelligence, 49:1502–1516, 2019.

472 Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representations of words and phrases

and their compositionality. Advances in neural information processing systems, 26, 2013.

473 Shuang Liu, Baiyang Zhao, Renjie Guo, Guozhu Meng, Fan Zhang, and Meishan Zhang. Have you been properly notified?

automatic compliance analysis of privacy policy text with gdpr article 13. In Proceedings of the Web Conference 2021,

pages 2154–2164, 2021.

474 Cindy Rubio-González and Ben Liblit. Expect the unexpected: Error code mismatches between documentation and the

real world. In Proceedings of the 9th ACM SIGPLAN-SIGSOFT workshop on Program analysis for software tools and

engineering, pages 73–80, 2010.

475 Lin Tan, Ding Yuan, Gopal Krishna, and Yuanyuan Zhou. /* icomment: Bugs or bad comments?*. In Proceedings of

twenty-first ACM SIGOPS symposium on Operating systems principles, pages 145–158, 2007.

476 Shin Hwei Tan, Darko Marinov, Lin Tan, and Gary T Leavens. @ tcomment: Testing javadoc comments to detect comment-

code inconsistencies. In 2012 IEEE Fifth International Conference on Software Testing, Verification and Validation,

pages 260–269. IEEE, 2012.

477 Fengcai Wen, Csaba Nagy, Gabriele Bavota, and Michele Lanza. A large-scale empirical study on code-comment inconsis-

tencies. In 2019 IEEE/ACM 27th International Conference on Program Comprehension (ICPC), pages 53–64. IEEE,

2019.

478 Rahul Pandita, Kunal Taneja, Laurie Williams, and Teresa Tung. Icon: Inferring temporal constraints from natural language

api descriptions. In 2016 IEEE international conference on software maintenance and evolution (ICSME), pages 378–388.

IEEE, 2016.

479 Xiaoxue Ren, Xinyuan Ye, Zhenchang Xing, Xin Xia, Xiwei Xu, Liming Zhu, and Jianling Sun. Api-misuse detection

driven by fine-grained api-constraint knowledge graph. In Proceedings of the 35th IEEE/ACM International Conference

on Automated Software Engineering, pages 461–472, 2020.

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 89

480 Tao Lv, Ruishi Li, Yi Yang, Kai Chen, Xiaojing Liao, XiaoFeng Wang, Peiwei Hu, and Luyi Xing. Rtfm! automatic

assumption discovery and verification derivation from library document for api misuse detection. In Proceedings of the 2020

ACM SIGSAC conference on computer and communications security, pages 1837–1852, 2020.

481 Insu Yun, Changwoo Min, Xujie Si, Yeongjin Jang, Taesoo Kim, and Mayur Naik. Apisan: Sanitizing api usages through

semantic cross-checking. In Usenix Security Symposium, pages 363–378, 2016.

482 Yuan Kang, Baishakhi Ray, and Suman Jana. Apex: Automated inference of error specifications for c apis. In Proceedings

of the 31st IEEE/ACM International Conference on Automated Software Engineering, pages 472–482, 2016.

483 Chi Li, Min Zhou, Zuxing Gu, Ming Gu, and Hongyu Zhang. Ares: Inferring error specifications through static analysis.

In 2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE), pages 1174–1177. IEEE,

2019.

484 Ari Takanen, Jared D Demott, Charles Miller, and Atte Kettunen. Fuzzing for software security testing and quality

assurance. Artech House, 2018.

485 Wei You, Peiyuan Zong, Kai Chen, XiaoFeng Wang, Xiaojing Liao, Pan Bian, and Bin Liang. Semfuzz: Semantics-based

automatic generation of proof-of-concept exploits. In Proceedings of the 2017 ACM SIGSAC Conference on Computer

and Communications Security, pages 2139–2154, 2017.

486 Patrice Godefroid, Hila Peleg, and Rishabh Singh. Learn&fuzz: Machine learning for input fuzzing. In 2017 32nd

IEEE/ACM International Conference on Automated Software Engineering (ASE), pages 50–59. IEEE, 2017.

487 Xiao Liu, Xiaoting Li, Rupesh Prajapati, and Dinghao Wu. Deepfuzz: Automatic generation of syntax valid c programs for

fuzz testing. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 1044–1051, 2019.

488 Suyoung Lee, HyungSeok Han, Sang Kil Cha, and Sooel Son. Montage: A neural network language model-guided javascript

engine fuzzer. In Proceedings of the 29th USENIX Conference on Security Symposium, pages 2613–2630, 2020.

489 Peng Chen and Hao Chen. Angora: Efficient fuzzing by principled search. In 2018 IEEE Symposium on Security and

Privacy (SP), pages 711–725. IEEE, 2018.

490 Ken-Ichi Funahashi. On the approximate realization of continuous mappings by neural networks. Neural networks,

2(3):183–192, 1989.

491 Stefan Nagy and Matthew Hicks. Full-speed fuzzing: Reducing fuzzing overhead through coverage-guided tracing. In 2019

IEEE Symposium on Security and Privacy (SP), pages 787–802. IEEE, 2019.

492 Chijin Zhou, Mingzhe Wang, Jie Liang, Zhe Liu, and Yu Jiang. Zeror: Speed up fuzzing with coverage-sensitive tracing and

scheduling. In Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering, pages

858–870, 2020.

493 Peiyuan Zong, Tao Lv, Dawei Wang, Zizhuang Deng, Ruigang Liang, and Kai Chen. Fuzzguard: Filtering out unreachable

inputs in directed grey-box fuzzing through deep learning. In Proceedings of the 29th USENIX Conference on Security

Symposium, pages 2255–2269, 2020.

494 Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. Safe systems programming in Rust. 2021.

495 W Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. A survey on software fault localization. IEEE

Transactions on Software Engineering, 42(8):707–740, 2016.

496 Abubakar Zakari, Sai Peck Lee, Rui Abreu, Babiker Hussien Ahmed, and Rasheed Abubakar Rasheed. Multiple fault

localization of software programs: A systematic literature review. Information and Software Technology, 124:106312, 2020.

497 Xiaoyuan Xie, Zicong Liu, Shuo Song, Zhenyu Chen, Jifeng Xuan, and Baowen Xu. Revisit of automatic debugging via

human focus-tracking analysis. In Proceedings of the 38th International Conference on Software Engineering, pages

808–819, 2016.

498 H. Agrawal, J.R. Horgan, S. London, and W.E. Wong. Fault localization using execution slices and dataflow tests. In

Proceedings of Sixth International Symposium on Software Reliability Engineering. ISSRE’95, pages 143–151, 1995.

499 Chu-Pan Wong, Yingfei Xiong, Hongyu Zhang, Dan Hao, Lu Zhang, and Hong Mei. Boosting bug-report-oriented fault

localization with segmentation and stack-trace analysis. In 2014 IEEE International Conference on Software Maintenance

and Evolution, pages 181–190, 2014.

500 Xiangyu Zhang, Neelam Gupta, and Rajiv Gupta. Locating faults through automated predicate switching. In Proceedings

of the 28th International Conference on Software Engineering, ICSE ’06, page 272–281, New York, NY, USA, 2006.

Association for Computing Machinery.

501 James A Jones, Mary Jean Harrold, and John Stasko. Visualization of test information to assist fault localization. In

Proceedings of the 24th international conference on Software engineering, pages 467–477, 2002.

502 Ben Liblit, Mayur Naik, Alice X Zheng, Alex Aiken, and Michael I Jordan. Scalable statistical bug isolation. Acm Sigplan

Notices, 40(6):15–26, 2005.

503 Rui Abreu, Peter Zoeteweij, Rob Golsteijn, and Arjan JC Van Gemund. A practical evaluation of spectrum-based fault

localization. Journal of Systems and Software, 82(11):1780–1792, 2009.

504 Xiaoyuan Xie, Tsong Yueh Chen, Fei-Ching Kuo, and Baowen Xu. A theoretical analysis of the risk evaluation formulas for

spectrum-based fault localization. ACM Transactions on software engineering and methodology (TOSEM), 22(4):1–40,

2013.

505 Daming Zou, Jingjing Liang, Yingfei Xiong, Michael D Ernst, and Lu Zhang. An empirical study of fault localization

families and their combinations. IEEE Transactions on Software Engineering, 47(2):332–347, 2019.

506 Ratnadira Widyasari, Gede Artha Azriadi Prana, Stefanus A Haryono, Yuan Tian, Hafil Noer Zachiary, and David Lo. Xai4fl:

enhancing spectrum-based fault localization with explainable artificial intelligence. In Proceedings of the 30th IEEE/ACM

International Conference on Program Comprehension, pages 499–510, 2022.

507 Seokhyeon Moon, Yunho Kim, Moonzoo Kim, and Shin Yoo. Ask the mutants: Mutating faulty programs for fault localiza-

tion. In 2014 IEEE Seventh International Conference on Software Testing, Verification and Validation, pages 153–162.

IEEE, 2014.

508 Mike Papadakis and Yves Le Traon. Metallaxis-fl: mutation-based fault localization. Software Testing, Verification and

Reliability, 25(5-7):605–628, 2015.

509 W Eric Wong and Yu Qi. Bp neural network-based effective fault localization. International Journal of Software Engi-

neering and Knowledge Engineering, 19(04):573–597, 2009.

510 W. E. Wong, V. Debroy, R. Golden, Xiaofeng Xu, and B. Thuraisingham. Effective software fault localization using an rbf

neural network. IEEE Transactions on Reliability, 61(1):149–169, 2012.

511 Wei Zheng, Desheng Hu, and Jing Wang. Fault localization analysis based on deep neural network. Mathematical Problems

in Engineering, 2016:1–11, 01 2016.

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 90

512 Zhuo ZHANG, Yan LEI, Qingping TAN, Xiaoguang MAO, Ping ZENG, and Xi CHANG. Deep learning-based fault local-

ization with contextual information. IEICE Transactions on Information and Systems, E100.D(12):3027–3031, 2017.

513 Xia Li, Wei Li, Yuqun Zhang, and Lingming Zhang. Deepfl: Integrating multiple fault diagnosis dimensions for deep fault

localization. In Proceedings of the 28th ACM SIGSOFT international symposium on software testing and analysis, pages

169–180, 2019.

514 Zhuo, Zhang, Yan, Lei, Xiaoguang, Mao, Panpan, and Li. Cnn-fl: An effective approach for localizing faults using convolu-

tional neural networks. In 2019 IEEE 26th International Conference on Software Analysis, Evolution and Reengineering

(SANER).

515 Yi Li, Shaohua Wang, and Tien Nguyen. Fault localization with code coverage representation learning. In 2021 IEEE/ACM

43rd International Conference on Software Engineering (ICSE), pages 661–673. IEEE, 2021.

516 Yiling Lou, Qihao Zhu, Jinhao Dong, Xia Li, Zeyu Sun, Dan Hao, Lu Zhang, and Lingming Zhang. Boosting coverage-based

fault localization via graph-based representation learning. In Proceedings of the 29th ACM Joint Meeting on European

Software Engineering Conference and Symposium on the Foundations of Software Engineering, pages 664–676, 2021.

517 Jie Qian, Xiaolin Ju, Xiang Chen, Hao Shen, and Yiheng Shen. Agfl: a graph convolutional neural network-based method

for fault localization. In 2021 IEEE 21st International Conference on Software Quality, Reliability and Security (QRS),

pages 672–680. IEEE, 2021.

518 Jie Qian, Xiaolin Ju, and Xiang Chen. Gnet4fl: effective fault localization via graph convolutional neural network. Auto-

mated Software Engineering, 30(2):16, Apr 2023.

519 Zhuo Zhang, Yan Lei, Xiaoguang Mao, Meng Yan, Xin Xia, and David Lo. Context-aware neural fault localization. IEEE

Transactions on Software Engineering, pages 1–17, 2023.

520 Yi Li, Shaohua Wang, and Tien N. Nguyen. Fault localization to detect co-change fixing locations. In Proceedings of the

30th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering,

ESEC/FSE 2022, page 659–671, New York, NY, USA, 2022. Association for Computing Machinery.

521 Arpita Dutta, Richa Manral, Pabitra Mitra, and Rajib Mall. Hierarchically localizing software faults using dnn. IEEE

Transactions on Reliability, 69(4):1267–1292, 2020.

522 Junji Yu, Yan Lei, Huan Xie, Lingfeng Fu, and Chunyan Liu. Context-based cluster fault localization. In Proceedings of the

30th IEEE/ACM International Conference on Program Comprehension, ICPC ’22, page 482–493, New York, NY, USA,

2022. Association for Computing Machinery.

523 Zhengmin Li, Enyi Tang, Xin Chen, Linzhang Wang, and Xuandong Li. Graph neural network based two-phase fault

localization approach. In Proceedings of the 13th Asia-Pacific Symposium on Internetware, pages 85–95, 2022.

524 Leila Yousofvand, Seyfollah Soleimani, and Vahid Rafe. Automatic bug localization using a combination of deep learning

and model transformation through node classification. Software Quality Journal, pages 1–19, 2023.

525 Shumei Wu, Zheng Li, Yong Liu, Xiang Chen, and Mingyu Li. Gmbfl: Optimizing mutation-based fault localization via

graph representation. In 2023 IEEE International Conference on Software Maintenance and Evolution (ICSME), pages

245–257. IEEE, 2023.

526 Junming Cao, Shouliang Yang, Wenhui Jiang, Hushuang Zeng, Beijun Shen, and Hao Zhong. Bugpecker: Locating faulty

methods with deep learning on revision graphs. In 2020 35th IEEE/ACM International Conference on Automated Software

Engineering (ASE), pages 1214–1218, 2020.

527 Agnieszka Ciborowska and Kostadin Damevski. Fast changeset-based bug localization with bert. In Proceedings of the 44th

International Conference on Software Engineering, ICSE ’22, page 946–957, New York, NY, USA, 2022. Association for

Computing Machinery.

528 Zhuo Zhang, Yan Lei, Xiaoguang Mao, Meng Yan, Ling Xu, and Xiaohong Zhang. A study of effectiveness of deep learning

in locating real faults. Information and Software Technology, 131:106486, 2021.

529 Hao Zhong and Hong Mei. Learning a graph-based classifier for fault localization. Science China Information Sciences,

63:1–22, 2020.

530 Zhuo Zhang, Yan Lei, Xiaoguang Mao, Meng Yan, Ling Xu, and Junhao Wen. Improving deep-learning-based fault local-

ization with resampling. Journal of Software: Evolution and Process, 33(3):e2312, 2021.

531 Huan Xie, Yan Lei, Meng Yan, Yue Yu, Xin Xia, and Xiaoguang Mao. A universal data augmentation approach for fault

localization. In Proceedings of the 44th International Conference on Software Engineering, ICSE ’22, page 48–60, New

York, NY, USA, 2022. Association for Computing Machinery.

532 Jian Hu, Huan Xie, Yan Lei, and Ke Yu. A light-weight data augmentation method for fault localization. Information and

Software Technology, 157:107148, 2023.

533 Yan Lei, Chunyan Liu, Huan Xie, Sheng Huang, Meng Yan, and Zhou Xu. Bcl-fl: A data augmentation approach with

between-class learning for fault localization. In 2022 IEEE International Conference on Software Analysis, Evolution and

Reengineering (SANER), pages 289–300, 2022.

534 Yan Lei, Tiantian Wen, Huan Xie, Lingfeng Fu, Chunyan Liu, Lei Xu, and Hongxia Sun. Mitigating the effect of class

imbalance in fault localization using context-aware generative adversarial network. In Proceedings of the 31st IEEE/ACM

International Conference on Program Comprehension, ICPC ’23, 2023.

535 Zhuo Zhang, Yan Lei, Ting Su, Meng Yan, Xiaoguang Mao, and Yue Yu. Influential global and local contexts guided trace

representation for fault localization. ACM Transactions on Software Engineering and Methodology, 32(3):1–27, 2023.

536 Zhao Tian, Junjie Chen, Qihao Zhu, Junjie Yang, and Lingming Zhang. Learning to construct better mutation faults. In

37th IEEE/ACM International Conference on Automated Software Engineering, pages 1–13, 2022.

537 Zhuo Zhang, Yan Lei, Xiaoguang Mao, Meng Yan, and Xin Xia. Improving fault localization using model-domain synthesized

failing test generation. In 2022 IEEE International Conference on Software Maintenance and Evolution (ICSME), pages

199–210, 2022.

538 René Just, Darioush Jalali, and Michael D Ernst. Defects4j: A database of existing faults to enable controlled testing studies

for java programs. In Proceedings of the 2014 international symposium on software testing and analysis, pages 437–440,

2014.

539 Fernanda Madeiral, Simon Urli, Marcelo Maia, and Martin Monperrus. Bears: An extensible java bug benchmark for

automatic program repair studies. In 2019 IEEE 26th International Conference on Software Analysis, Evolution and

Reengineering (SANER), pages 468–478. IEEE, 2019.

540 Hyunsook Do, Sebastian Elbaum, and Gregg Rothermel. Supporting controlled experimentation with testing techniques:

An infrastructure and its potential impact. Empirical Software Engineering, 10:405–435, 2005.

541 Claire Le Goues, Neal Holtschulte, Edward K Smith, Yuriy Brun, Premkumar Devanbu, Stephanie Forrest, and Westley

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 91

Weimer. The manybugs and introclass benchmarks for automated repair of c programs. IEEE Transactions on Software

Engineering, 41(12):1236–1256, 2015.

542 Cathrin Weiß, Rahul Premraj, Thomas Zimmermann, and Andreas Zeller. How long will it take to fix this bug? In Fourth

International Workshop on Mining Software Repositories, MSR 2007 (ICSE Workshop), Minneapolis, MN, USA, May

19-20, 2007, Proceedings, page 1. IEEE Computer Society, 2007.

543 Luca Gazzola, Daniela Micucci, and Leonardo Mariani. Automatic software repair: A survey. IEEE Trans. Software Eng.,

45(1):34–67, 2019.

544 Jifeng Xuan, Zhilei Ren, Ziyuan Wang, Xiaoyuan Xie, and Jiang He. Progress on approaches to automatic program repair.

Journal of Software, 27(4):771–784, 2016.

545 Martin Monperrus. The living review on automated program repair. Research Report hal-01956501, HAL Archives Ouvertes,

2018. Version: 5.

546 Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin White, and Denys Poshyvanyk. An empirical

study on learning bug-fixing patches in the wild via neural machine translation. ACM Trans. Softw. Eng. Methodol.,

28(4):19:1–19:29, 2019.

547 Christian Kern. Automatic error correction of java programs. In Kai Bollue, Dominique Gückel, Ulrich Loup, Jacob

Spönemann, and Melanie Winkler, editors, Proceedings of the Joint Workshop of the German Research Training Groups

in Computer Science, Algorithmic synthesis of reactive and discrete-continuous systems, AlgoSyn 2010, May 31 - June

2, 2010, page 155. Verlagshaus Mainz, Aachen, Germany, 2010.

548 Yuchi Tian and Baishakhi Ray. Automatically diagnosing and repairing error handling bugs in C. In Eric Bodden, Wilhelm

Schäfer, Arie van Deursen, and Andrea Zisman, editors, Proceedings of the 2017 11th Joint Meeting on Foundations of

Software Engineering, ESEC/FSE 2017, Paderborn, Germany, September 4-8, 2017, pages 752–762. ACM, 2017.

549 Antonio Carvalho, Welder Pinheiro Luz, Diego Marcilio, Rodrigo Bonifácio, Gustavo Pinto, and Edna Dias Canedo. C-

3PR: A bot for fixing static analysis violations via pull requests. In Kostas Kontogiannis, Foutse Khomh, Alexander

Chatzigeorgiou, Marios-Eleftherios Fokaefs, and Minghui Zhou, editors, 27th IEEE International Conference on Software

Analysis, Evolution and Reengineering, SANER 2020, London, ON, Canada, February 18-21, 2020, pages 161–171.

IEEE, 2020.

550 Alfred V. Aho and Thomas G. Peterson. A minimum distance error-correcting parser for context-free languages. SIAM J.

Comput., 1(4):305–312, 1972.

551 Susan L. Graham and Steven P. Rhodes. Practical syntactic error recovery. In Patrick C. Fischer and Jeffrey D. Ullman,

editors, Conference Record of the ACM Symposium on Principles of Programming Languages, Boston, Massachusetts,

USA, October 1973, pages 52–58. ACM Press, 1973.

552 Stuart Oliver Anderson and Roland Carl Backhouse. Locally least-cost error recovery in early’s algorithm. ACM Trans.

Program. Lang. Syst., 3(3):318–347, 1981.

553 Michael G. Burke. A Practical Method for Lr and Ll Syntactic Error Diagnosis and Recovery. PhD thesis, New York

University, USA, 1983.

554 Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish K. Shevade. Deepfix: Fixing common C language errors by deep

learning. In Satinder Singh and Shaul Markovitch, editors, Proceedings of the Thirty-First AAAI Conference on Artificial

Intelligence, February 4-9, 2017, San Francisco, California, USA, pages 1345–1351. AAAI Press, 2017.

555 Sahil Bhatia, Pushmeet Kohli, and Rishabh Singh. Neuro-symbolic program corrector for introductory programming assign-

ments. In Proceedings of the 40th International Conference on Software Engineering, ICSE 2018, Gothenburg, Sweden,

May 27 - June 03, 2018, pages 60–70. ACM, 2018.

556 Umair Z. Ahmed, Pawan Kumar, Amey Karkare, Purushottam Kar, and Sumit Gulwani. Compilation error repair: for

the student programs, from the student programs. In Proceedings of the 40th International Conference on Software

Engineering: Software Engineering Education and Training, ICSE (SEET) 2018, Gothenburg, Sweden, May 27 - June

03, 2018, pages 78–87. ACM, 2018.

557 Eddie Antonio Santos, Joshua Charles Campbell, Dhvani Patel, Abram Hindle, and José Nelson Amaral. Syntax and

sensibility: Using language models to detect and correct syntax errors. In 25th International Conference on Software

Analysis, Evolution and Reengineering, SANER 2018, Campobasso, Italy, March 20-23, 2018, pages 311–322. IEEE

Computer Society, 2018.

558 Neil Christopher Charles Brown, Michael Kölling, Davin McCall, and Ian Utting. Blackbox: a large scale repository of

novice programmers’ activity. In The 45th ACM Technical Symposium on Computer Science Education, SIGCSE 2014,

Atlanta, GA, USA, March 5-8, 2014, pages 223–228. ACM, 2014.

559 Ali Mesbah, Andrew Rice, Emily Johnston, Nick Glorioso, and Edward Aftandilian. Deepdelta: learning to repair compi-

lation errors. In Proceedings of the ACM Joint Meeting on European Software Engineering Conference and Symposium

on the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2019, Tallinn, Estonia, August 26-30, 2019, pages

925–936. ACM, 2019.

560 Rahul Gupta, Aditya Kanade, and Shirish K. Shevade. Deep reinforcement learning for syntactic error repair in student

programs. In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative

Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in

Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019, pages 930–937. AAAI Press,

2019.

561 Liwei Wu, Fei Li, Youhua Wu, and Tao Zheng. GGF: A graph-based method for programming language syntax error

correction. In ICPC ’20: 28th International Conference on Program Comprehension, Seoul, Republic of Korea, July

13-15, 2020, pages 139–148. ACM, 2020.

562 Michihiro Yasunaga and Percy Liang. Graph-based, self-supervised program repair from diagnostic feedback. In Proceedings

of the 37th International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of

Proceedings of Machine Learning Research, pages 10799–10808. PMLR, 2020.

563 Hossein Hajipour, Apratim Bhattacharyya, Cristian-Alexandru Staicu, and Mario Fritz. Samplefix: Learning to generate

functionally diverse fixes. In Machine Learning and Principles and Practice of Knowledge Discovery in Databases -

International Workshops of ECML PKDD 2021, Virtual Event, September 13-17, 2021, Proceedings, Part II, volume

1525 of Communications in Computer and Information Science, pages 119–133. Springer, 2021.

564 Michihiro Yasunaga and Percy Liang. Break-it-fix-it: Unsupervised learning for program repair. In Proceedings of the 38th

International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings

of Machine Learning Research, pages 11941–11952. PMLR, 2021.

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 92

565 Toufique Ahmed, Premkumar T. Devanbu, and Vincent J. Hellendoorn. Learning lenient parsing & typing via indirect

supervision. Empir. Softw. Eng., 26(2):29, 2021.

566 Georgios Sakkas, Madeline Endres, Philip J. Guo, Westley Weimer, and Ranjit Jhala. Seq2parse: neurosymbolic parse error

repair. Proc. ACM Program. Lang., 6(OOPSLA2):1180–1206, 2022.

567 Xueyang Li, Shangqing Liu, Ruitao Feng, Guozhu Meng, Xiaofei Xie, Kai Chen, and Yang Liu. Transrepair: Context-aware

program repair for compilation errors. In 37th IEEE/ACM International Conference on Automated Software Engineering,

ASE 2022, Rochester, MI, USA, October 10-14, 2022, pages 108:1–108:13. ACM, 2022.

568 Toufique Ahmed, Noah Rose Ledesma, and Premkumar T. Devanbu. Synshine: Improved fixing of syntax errors. IEEE

Trans. Software Eng., 49(4):2169–2181, 2023.

569 Zhuang Liu, Wayne Lin, Ya Shi, and Jun Zhao. A robustly optimized BERT pre-training approach with post-training. In

Sheng Li, Maosong Sun, Yang Liu, Hua Wu, Kang Liu, Wanxiang Che, Shizhu He, and Gaoqi Rao, editors, Chinese Com-

putational Linguistics - 20th China National Conference, CCL 2021, Hohhot, China, August 13-15, 2021, Proceedings,

volume 12869 of Lecture Notes in Computer Science, pages 471–484. Springer, 2021.

570 Yongfeng Gu, Ping Ma, Xiangyang Jia, He Jiang, and Jifeng Xuan. Progress on software crash research. SCIENTIA

SINICA Informationis, 49(11):1383–1398, 2019.

571 Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer. Genprog: A generic method for automatic

software repair. IEEE Trans. Software Eng., 38(1):54–72, 2012.

572 Chu-Pan Wong, Priscila Santiesteban, Christian Kästner, and Claire Le Goues. Varfix: balancing edit expressiveness and

search effectiveness in automated program repair. In Diomidis Spinellis, Georgios Gousios, Marsha Chechik, and Massimil-

iano Di Penta, editors, ESEC/FSE ’21: 29th ACM Joint European Software Engineering Conference and Symposium on

the Foundations of Software Engineering, Athens, Greece, August 23-28, 2021, pages 354–366. ACM, 2021.

573 Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish Chandra. Semfix: program repair via semantic

analysis. In David Notkin, Betty H. C. Cheng, and Klaus Pohl, editors, 35th International Conference on Software

Engineering, ICSE ’13, San Francisco, CA, USA, May 18-26, 2013, pages 772–781. IEEE Computer Society, 2013.

574 Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. Angelix: scalable multiline program patch synthesis via symbolic

analysis. In Laura K. Dillon, Willem Visser, and Laurie A. Williams, editors, Proceedings of the 38th International

Conference on Software Engineering, ICSE 2016, Austin, TX, USA, May 14-22, 2016, pages 691–701. ACM, 2016.

575 Jifeng Xuan, Matias Martinez, Favio Demarco, Maxime Clement, Sebastian R. Lamelas Marcote, Thomas Durieux, Daniel Le

Berre, and Martin Monperrus. Nopol: Automatic repair of conditional statement bugs in java programs. IEEE Trans.

Software Eng., 43(1):34–55, 2017.

576 Shin Hwei Tan and Abhik Roychoudhury. relifix: Automated repair of software regressions. In Antonia Bertolino, Gerardo

Canfora, and Sebastian G. Elbaum, editors, 37th IEEE/ACM International Conference on Software Engineering, ICSE

2015, Florence, Italy, May 16-24, 2015, Volume 1, pages 471–482. IEEE Computer Society, 2015.

577 Seemanta Saha, Ripon K. Saha, and Mukul R. Prasad. Harnessing evolution for multi-hunk program repair. In Joanne M.

Atlee, Tevfik Bultan, and Jon Whittle, editors, Proceedings of the 41st International Conference on Software Engineering,

ICSE 2019, Montreal, QC, Canada, May 25-31, 2019, pages 13–24. IEEE / ACM, 2019.

578 Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F. Bissyandé. Tbar: revisiting template-based automated program

repair. In Dongmei Zhang and Anders Møller, editors, Proceedings of the 28th ACM SIGSOFT International Symposium

on Software Testing and Analysis, ISSTA 2019, Beijing, China, July 15-19, 2019, pages 31–42. ACM, 2019.

579 Martin White, Michele Tufano, Matias Martinez, Martin Monperrus, and Denys Poshyvanyk. Sorting and transforming

program repair ingredients via deep learning code similarities. In 26th IEEE International Conference on Software Analysis,

Evolution and Reengineering, SANER 2019, Hangzhou, China, February 24-27, 2019, pages 479–490. IEEE, 2019.

580 Zimin Chen, Steve Kommrusch, Michele Tufano, Louis-Noël Pouchet, Denys Poshyvanyk, and Martin Monperrus. Sequencer:

Sequence-to-sequence learning for end-to-end program repair. IEEE Trans. Software Eng., 47(9):1943–1959, 2021.

581 Nan Jiang, Thibaud Lutellier, and Lin Tan. CURE: code-aware neural machine translation for automatic program repair.

In 43rd IEEE/ACM International Conference on Software Engineering, ICSE 2021, Madrid, Spain, 22-30 May 2021,

pages 1161–1173. IEEE, 2021.

582 Fan Long and Martin C. Rinard. Automatic patch generation by learning correct code. In Proceedings of the 43rd Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA,

January 20 - 22, 2016, pages 298–312. ACM, 2016.

583 Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley Weimer. A systematic study of automated program

repair: Fixing 55 out of 105 bugs for $8 each. In 34th International Conference on Software Engineering, ICSE 2012,

June 2-9, 2012, Zurich, Switzerland, pages 3–13. IEEE Computer Society, 2012.

584 Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin White, and Denys Poshyvanyk. An

empirical investigation into learning bug-fixing patches in the wild via neural machine translation. In Proceedings of

the 33rd ACM/IEEE International Conference on Automated Software Engineering, ASE 2018, Montpellier, France,

September 3-7, 2018, pages 832–837. ACM, 2018.

585 Zhiyu Sun, Chao Xin, and Yanchun Sun. An automatic semantic code repair service based on deep learning for programs

with single error. In 2019 IEEE World Congress on Services, SERVICES 2019, Milan, Italy, July 8-13, 2019, pages

360–361. IEEE, 2019.

586 Yangruibo Ding, Baishakhi Ray, Premkumar T. Devanbu, and Vincent J. Hellendoorn. Patching as translation: the data and

the metaphor. In 35th IEEE/ACM International Conference on Automated Software Engineering, ASE 2020, Melbourne,

Australia, September 21-25, 2020, pages 275–286. IEEE, 2020.

587 Geunseok Yang, Kyeongsic Min, and Byungjeong Lee. Applying deep learning algorithm to automatic bug localization and

repair. In SAC ’20: The 35th ACM/SIGAPP Symposium on Applied Computing, online event, Brno, Czech Republic,

March 30 - April 3, 2020, pages 1634–1641. ACM, 2020.

588 Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. Seqgan: Sequence generative adversarial nets with policy gradi-

ent. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, February 4-9, 2017, San Francisco,

California, USA, pages 2852–2858. AAAI Press, 2017.

589 Thibaud Lutellier, Hung Viet Pham, Lawrence Pang, Yitong Li, Moshi Wei, and Lin Tan. Coconut: combining context-

aware neural translation models using ensemble for program repair. In ISSTA ’20: 29th ACM SIGSOFT International

Symposium on Software Testing and Analysis, Virtual Event, USA, July 18-22, 2020, pages 101–114. ACM, 2020.

590 Matias Martinez, Thomas Durieux, Romain Sommerard, Jifeng Xuan, and Martin Monperrus. Automatic repair of real bugs

in java: a large-scale experiment on the defects4j dataset. Empir. Softw. Eng., 22(4):1936–1964, 2017.

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 93

591 Ripon K. Saha, Yingjun Lyu, Wing Lam, Hiroaki Yoshida, and Mukul R. Prasad. Bugs.jar: a large-scale, diverse dataset of

real-world java bugs. In Proceedings of the 15th International Conference on Mining Software Repositories, MSR 2018,

Gothenburg, Sweden, May 28-29, 2018, pages 10–13. ACM, 2018.

592 Haoye Tian, Kui Liu, Abdoul Kader Kaboré, Anil Koyuncu, Li Li, Jacques Klein, and Tegawendé F. Bissyandé. Evaluating

representation learning of code changes for predicting patch correctness in program repair. In 35th IEEE/ACM International

Conference on Automated Software Engineering, ASE 2020, Melbourne, Australia, September 21-25, 2020, pages 981–992.

IEEE, 2020.

593 Elizabeth Dinella, Hanjun Dai, Ziyang Li, Mayur Naik, Le Song, and Ke Wang. Hoppity: Learning graph transformations

to detect and fix bugs in programs. In 8th International Conference on Learning Representations, ICLR 2020, Addis

Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

594 Yu Tang, Long Zhou, Ambrosio Blanco, Shujie Liu, Furu Wei, Ming Zhou, and Muyun Yang. Grammar-based patches

generation for automated program repair. In Findings of the Association for Computational Linguistics: ACL/IJCNLP

2021, Online Event, August 1-6, 2021, volume ACL/IJCNLP 2021 of Findings of ACL, pages 1300–1305. Association for

Computational Linguistics, 2021.

595 Shan Huang, Xiao Zhou, and Sang Chin. Application of seq2seq models on code correction. Frontiers Artif. Intell.,

4:590215, 2021.

596 Md. Mostafizer Rahman, Yutaka Watanobe, and Keita Nakamura. A bidirectional LSTM language model for code evaluation

and repair. Symmetry, 13(2):247, 2021.

597 Berkay Berabi, Jingxuan He, Veselin Raychev, and Martin T. Vechev. Tfix: Learning to fix coding errors with a text-to-text

transformer. In Proceedings of the 38th International Conference on Machine Learning, ICML 2021, 18-24 July 2021,

Virtual Event, volume 139 of Proceedings of Machine Learning Research, pages 780–791. PMLR, 2021.

598 Ben Tang, Bin Li, Lili Bo, Xiaoxue Wu, Sicong Cao, and Xiaobing Sun. Grasp: Graph-to-sequence learning for automated

program repair. In 21st IEEE International Conference on Software Quality, Reliability and Security, QRS 2021, Hainan,

China, December 6-10, 2021, pages 819–828. IEEE, 2021.

599 Balázs Szalontai, András Vadász, Zsolt Richárd Borsi, Teréz A. Várkonyi, Balázs Pintér, and Tibor Gregorics. Detecting

and fixing nonidiomatic snippets in python source code with deep learning. In Intelligent Systems and Applications -

Proceedings of the 2021 Intelligent Systems Conference, IntelliSys 2021, Amsterdam, The Netherlands, 2-3 September,

2021, Volume 1, volume 294 of Lecture Notes in Networks and Systems, pages 129–147. Springer, 2021.

600 Yi Li, Shaohua Wang, and Tien N. Nguyen. DEAR: A novel deep learning-based approach for automated program repair. In

44th IEEE/ACM 44th International Conference on Software Engineering, ICSE 2022, Pittsburgh, PA, USA, May 25-27,

2022, pages 511–523. ACM, 2022.

601 Xuezheng Xu, Xudong Wang, and Jingling Xue. M3V: multi-modal multi-view context embedding for repair operator

prediction. In IEEE/ACM International Symposium on Code Generation and Optimization, CGO 2022, Seoul, Korea,

Republic of, April 2-6, 2022, pages 266–277. IEEE, 2022.

602 Xiangxin Meng, Xu Wang, Hongyu Zhang, Hailong Sun, and Xudong Liu. Improving fault localization and program repair

with deep semantic features and transferred knowledge. In 44th IEEE/ACM 44th International Conference on Software

Engineering, ICSE 2022, Pittsburgh, PA, USA, May 25-27, 2022, pages 1169–1180. ACM, 2022.

603 Misoo Kim, Youngkyoung Kim, Jinseok Heo, Hohyeon Jeong, Sungoh Kim, and Eunseok Lee. Impact of defect instances

for successful deep learning-based automatic program repair. In IEEE International Conference on Software Maintenance

and Evolution, ICSME 2022, Limassol, Cyprus, October 3-7, 2022, pages 419–423. IEEE, 2022.

604 Mohammad Wardat, Breno Dantas Cruz, Wei Le, and Hridesh Rajan. Deepdiagnosis: Automatically diagnosing faults and

recommending actionable fixes in deep learning programs. In 44th IEEE/ACM 44th International Conference on Software

Engineering, ICSE 2022, Pittsburgh, PA, USA, May 25-27, 2022, pages 561–572. ACM, 2022.

605 Jie Yao, Bingbing Rao, Weiwei Xing, and Liqiang Wang. Bug-transformer: Automated program repair using attention-based

deep neural network. J. Circuits Syst. Comput., 31(12):2250210:1–2250210:26, 2022.

606 Dapeng Yan, Kui Liu, Yuqing Niu, Li Li, Zhe Liu, Zhiming Liu, Jacques Klein, and Tegawendé F. Bissyandé. Crex:

Predicting patch correctness in automated repair of C programs through transfer learning of execution semantics. Inf.

Softw. Technol., 152:107043, 2022.

607 Kexin Pei, Zhou Xuan, Junfeng Yang, Suman Jana, and Baishakhi Ray. Learning approximate execution semantics from

traces for binary function similarity. IEEE Trans. Software Eng., 49(4):2776–2790, 2023.

608 Saikat Chakraborty, Yangruibo Ding, Miltiadis Allamanis, and Baishakhi Ray. CODIT: code editing with tree-based neural

models. IEEE Trans. Software Eng., 48(4):1385–1399, 2022.

609 He Ye, Matias Martinez, and Martin Monperrus. Neural program repair with execution-based backpropagation. In 44th

IEEE/ACM 44th International Conference on Software Engineering, ICSE 2022, Pittsburgh, PA, USA, May 25-27,

2022, pages 1506–1518. ACM, 2022.

610 He Ye, Jian Gu, Matias Martinez, Thomas Durieux, and Martin Monperrus. Automated classification of overfitting patches

with statically extracted code features. IEEE Trans. Software Eng., 48(8):2920–2938, 2022.

611 He Ye, Matias Martinez, Xiapu Luo, Tao Zhang, and Martin Monperrus. Selfapr: Self-supervised program repair with test

execution diagnostics. In 37th IEEE/ACM International Conference on Automated Software Engineering, ASE 2022,

Rochester, MI, USA, October 10-14, 2022, pages 92:1–92:13. ACM, 2022.

612 Chunqiu Steven Xia and Lingming Zhang. Less training, more repairing please: revisiting automated program repair via

zero-shot learning. In Abhik Roychoudhury, Cristian Cadar, and Miryung Kim, editors, Proceedings of the 30th ACM Joint

European Software Engineering Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE

2022, Singapore, Singapore, November 14-18, 2022, pages 959–971. ACM, 2022.

613 Misoo Kim, Youngkyoung Kim, Hohyeon Jeong, Jinseok Heo, Sungoh Kim, Hyunhee Chung, and Eunseok Lee. An empirical

study of deep transfer learning-based program repair for kotlin projects. In Proceedings of the 30th ACM Joint Euro-

pean Software Engineering Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE 2022,

Singapore, Singapore, November 14-18, 2022, pages 1441–1452. ACM, 2022.

614 Haoye Tian, Yinghua Li, Weiguo Pian, Abdoul Kader Kaboré, Kui Liu, Andrew Habib, Jacques Klein, and Tegawendé F.

Bissyandé. Predicting patch correctness based on the similarity of failing test cases. ACM Trans. Softw. Eng. Methodol.,

31(4):77:1–77:30, 2022.

615 Wei Yuan, Quanjun Zhang, Tieke He, Chunrong Fang, Nguyen Quoc Viet Hung, Xiaodong Hao, and Hongzhi Yin. CIRCLE:

continual repair across programming languages. In ISSTA ’22: 31st ACM SIGSOFT International Symposium on Software

Testing and Analysis, Virtual Event, South Korea, July 18 - 22, 2022, pages 678–690. ACM, 2022.

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 94

616 Liushan Chen, Yu Pei, Minxue Pan, Tian Zhang, Qixin Wang, and Carlo A. Furia. Program repair with repeated learning.

IEEE Trans. Software Eng., 49(2):831–848, 2023.

617 Andrea Stocco, Rahulkrishna Yandrapally, and Ali Mesbah. Visual web test repair. In Proceedings of the 2018 ACM Joint

Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering,

ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA, November 04-09, 2018, pages 503–514. ACM, 2018.

618 Minxue Pan, Tongtong Xu, Yu Pei, Zhong Li, Tian Zhang, and Xuandong Li. Gui-guided test script repair for mobile apps.

IEEE Trans. Software Eng., 48(3):910–929, 2022.

619 Zhilei Ren, Shiwei Sun, Jifeng Xuan, Xiaochen Li, Zhide Zhou, and He Jiang. Automated patching for unreproducible

builds. In 44th IEEE/ACM 44th International Conference on Software Engineering, ICSE 2022, Pittsburgh, PA, USA,

May 25-27, 2022, pages 200–211. ACM, 2022.

620 Foyzul Hassan and Xiaoyin Wang. Hirebuild: an automatic approach to history-driven repair of build scripts. In Proceedings

of the 40th International Conference on Software Engineering, ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018,

pages 1078–1089. ACM, 2018.

621 Yiling Lou, Junjie Chen, Lingming Zhang, Dan Hao, and Lu Zhang. History-driven build failure fixing: how far are we?

In Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis, ISSTA 2019,

Beijing, China, July 15-19, 2019, pages 43–54. ACM, 2019.

622 Benjamin Loriot, Fernanda Madeiral, and Martin Monperrus. Styler: learning formatting conventions to repair checkstyle

violations. Empir. Softw. Eng., 27(6):149, 2022.

623 Siqi Ma, Ferdian Thung, David Lo, Cong Sun, and Robert H. Deng. Vurle: Automatic vulnerability detection and repair by

learning from examples. In Computer Security - ESORICS 2017 - 22nd European Symposium on Research in Computer

Security, Oslo, Norway, September 11-15, 2017, Proceedings, Part II, volume 10493 of Lecture Notes in Computer Science,

pages 229–246. Springer, 2017.

624 Jacob Harer, Onur Ozdemir, Tomo Lazovich, Christopher P. Reale, Rebecca L. Russell, Louis Y. Kim, and Peter Chin.

Learning to repair software vulnerabilities with generative adversarial networks. In Advances in Neural Information

Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December

3-8, 2018, Montréal, Canada, pages 7944–7954, 2018.

625 Zhou Zhou, Lili Bo, Xiaoxue Wu, Xiaobing Sun, Tao Zhang, Bin Li, Jiale Zhang, and Sicong Cao. SPVF: security property

assisted vulnerability fixing via attention-based models. Empir. Softw. Eng., 27(7):171, 2022.

626 Kai Huang, Su Yang, Hongyu Sun, Chengyi Sun, Xuejun Li, and Yuqing Zhang. Repairing security vulnerabilities using

pre-trained programming language models. In 52nd Annual IEEE/IFIP International Conference on Dependable Systems

and Networks, DSN Workshops 2022, Baltimore, MD, USA, June 27-30, 2022, pages 111–116. IEEE, 2022.

627 Zimin Chen, Steve Kommrusch, and Martin Monperrus. Neural transfer learning for repairing security vulnerabilities in C

code. IEEE Trans. Software Eng., 49(1):147–165, 2023.

628 Jianlei Chi, Yu Qu, Ting Liu, Qinghua Zheng, and Heng Yin. Seqtrans: Automatic vulnerability fix via sequence to sequence

learning. IEEE Trans. Software Eng., 49(2):564–585, 2023.

629 Rajdeep Das, Umair Z. Ahmed, Amey Karkare, and Sumit Gulwani. Prutor: A system for tutoring cs1 and collecting

student programs for analysis. arXiv preprint arXiv:1608.03828, 2016.

630 Neil C. C. Brown, Amjad Altadmri, Sue Sentance, and Michael Kölling. Blackbox, five years on: An evaluation of a large-

scale programming data collection project. In Proceedings of the 2018 ACM Conference on International Computing

Education Research, ICER ’18, page 196–204, New York, NY, USA, 2018. Association for Computing Machinery.

631 René Just, Darioush Jalali, and Michael D. Ernst. Defects4j: a database of existing faults to enable controlled testing studies

for java programs. In Corina S. Pasareanu and Darko Marinov, editors, International Symposium on Software Testing and

Analysis, ISSTA ’14, San Jose, CA, USA - July 21 - 26, 2014, pages 437–440. ACM, 2014.

632 Manish Motwani, Sandhya Sankaranarayanan, René Just, and Yuriy Brun. Do automated program repair techniques repair

hard and important bugs? In Michel Chaudron, Ivica Crnkovic, Marsha Chechik, and Mark Harman, editors, Proceedings of

the 40th International Conference on Software Engineering, ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018,

page 25. ACM, 2018.

633 Matias Martinez, Thomas Durieux, Romain Sommerard, Jifeng Xuan, and Martin Monperrus. Automatic repair of real bugs

in java: A large-scale experiment on the defects4j dataset. CoRR, abs/1811.02429, 2018.

634 Growingbugs, 2024. https://github.com/jiangyanjie/GrowingBugs.

635 Yanjie Jiang, Hui Liu, Nan Niu, Lu Zhang, and Yamin Hu. Extracting concise bug-fixing patches from human-written patches

in version control systems. In Proceedings of the 43rd International Conference on Software Engineering (ICSE’21), 2021.

636 Yanjie Jiang, Hui Liu, Xiaoqing Luo, Zhihao Zhu, Xiaye Chi, Nan Niu, Yuxia Zhang, Yamin Hu, Pan Bian, and Lu Zhang.

Bugbuilder: An automated approach to building bug repository. IEEE Transactions on Software Engineering, pages 1–22,

2022.

637 Quang-Cuong Bui, Riccardo Scandariato, and Nicolás E. Dı́az Ferreyra. Vul4j: A dataset of reproducible java vulnerabilities

geared towards the study of program repair techniques. In 2022 IEEE/ACM 19th International Conference on Mining

Software Repositories (MSR), pages 464–468, 2022.

638 Georgios Nikitopoulos, Konstantina Dritsa, Panos Louridas, and Dimitris Mitropoulos. Crossvul: A cross-language vul-

nerability dataset with commit data. In Proceedings of the 29th ACM Joint Meeting on European Software Engineering

Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE 2021, page 1565–1569, New York,

NY, USA, 2021. Association for Computing Machinery.

639 Weiqin Zou, David Lo, Zhenyu Chen, Xin Xia, Yang Feng, and Baowen Xu. How practitioners perceive automated bug

report management techniques. IEEE Transactions on Software Engineering, 46(8):836–862, 2018.

640 Nicolas Bettenburg, Sascha Just, Adrian Schröter, Cathrin Weiss, Rahul Premraj, and Thomas Zimmermann. What makes

a good bug report? In Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations of software

engineering, pages 308–318, 2008.

641 Dong-Gun Lee and Yeong-Seok Seo. Systematic review of bug report processing techniques to improve software management

performance. J. Inf. Process. Syst., 15(4):967–985, 2019.

642 John Anvik. Automating bug report assignment. In Proceedings of the 28th international conference on Software

engineering, pages 937–940, 2006.

643 He Jiang, Xiaochen Li, Zhilei Ren, Jifeng Xuan, and Zhi Jin. Toward better summarizing bug reports with crowdsourcing

elicited attributes. IEEE Transactions on Reliability, 68(1):2–22, 2018.

644 Youshuai Tan, Sijie Xu, Zhaowei Wang, Tao Zhang, Zhou Xu, and Xiapu Luo. Bug severity prediction using question-and-

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

https://github.com/jiangyanjie/GrowingBugs

Sci China Inf Sci 95

answer pairs from stack overflow. Journal of Systems and Software, 165:110567, 2020.

645 Ting Zhang, DongGyun Han, Venkatesh Vinayakarao, Ivana Clairine Irsan, Bowen Xu, Ferdian Thung, David Lo, and

Lingxiao Jiang. Duplicate bug report detection: How far are we? ACM Transactions on Software Engineering and

Methodology, 32(4):1–32, 2023.

646 Xiaochen Li, He Jiang, Dong Liu, Zhilei Ren, and Ge Li. Unsupervised deep bug report summarization. In Proceedings of

the 26th Conference on Program Comprehension, pages 144–155, 2018.

647 Fan Fang, John Wu, Yanyan Li, Xin Ye, Wajdi Aljedaani, and Mohamed Wiem Mkaouer. On the classification of bug reports

to improve bug localization. Soft Computing, 25:7307–7323, 2021.

648 Cheng Zhou, Bin Li, Xiaobing Sun, and Sheng Yu. Leveraging multi-level embeddings for knowledge-aware bug report

reformulation. Journal of Systems and Software, page 111617, 2023.

649 Jianjun He, Ling Xu, Meng Yan, Xin Xia, and Yan Lei. Duplicate bug report detection using dual-channel convolutional

neural networks. In Proceedings of the 28th International Conference on Program Comprehension, pages 117–127, 2020.

650 Guanping Xiao, Xiaoting Du, Yulei Sui, and Tao Yue. Hindbr: Heterogeneous information network based duplicate bug

report prediction. In 2020 IEEE 31st International Symposium on Software Reliability Engineering (ISSRE), pages

195–206. IEEE, 2020.

651 Qi Xie, Zhiyuan Wen, Jieming Zhu, Cuiyun Gao, and Zibin Zheng. Detecting duplicate bug reports with convolutional

neural networks. In 2018 25th Asia-Pacific Software Engineering Conference (APSEC), pages 416–425. IEEE, 2018.

652 Jayati Deshmukh, KM Annervaz, Sanjay Podder, Shubhashis Sengupta, and Neville Dubash. Towards accurate duplicate bug

retrieval using deep learning techniques. In 2017 IEEE International conference on software maintenance and evolution

(ICSME), pages 115–124. IEEE, 2017.

653 Amar Budhiraja, Kartik Dutta, Raghu Reddy, and Manish Shrivastava. DWEN: deep word embedding network for duplicate

bug report detection in software repositories. In Proceedings of the 40th International Conference on software engineering:

companion proceeedings, pages 193–194, 2018.

654 Haruna Isotani, Hironori Washizaki, Yoshiaki Fukazawa, Tsutomu Nomoto, Saori Ouji, and Shinobu Saito. Duplicate

bug report detection by using sentence embedding and fine-tuning. In 2021 IEEE International Conference on Software

Maintenance and Evolution (ICSME), pages 535–544. IEEE, 2021.

655 Yuan Jiang, Xiaohong Su, Christoph Treude, Chao Shang, and Tiantian Wang. Does deep learning improve the performance

of duplicate bug report detection? an empirical study. Journal of Systems and Software, page 111607, 2023.

656 Ugur Koc, Shiyi Wei, Jeffrey S Foster, Marine Carpuat, and Adam A Porter. An empirical assessment of machine learning

approaches for triaging reports of a Java static analysis tool. In 2019 12th ieee conference on software testing, validation

and verification (icst), pages 288–299. IEEE, 2019.

657 Adrian-Cătălin Florea, John Anvik, and Răzvan Andonie. Parallel implementation of a bug report assignment recommender

using deep learning. In Artificial Neural Networks and Machine Learning–ICANN 2017: 26th International Conference

on Artificial Neural Networks, Alghero, Italy, September 11-14, 2017, Proceedings, Part II 26, pages 64–71. Springer,

2017.

658 Sun-Ro Lee, Min-Jae Heo, Chan-Gun Lee, Milhan Kim, and Gaeul Jeong. Applying deep learning based automatic bug

triager to industrial projects. Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering, 2017.

659 Senthil Mani, Anush Sankaran, and Rahul Aralikatte. Deeptriage: Exploring the effectiveness of deep learning for bug

triaging. In Proceedings of the ACM India Joint International Conference on Data Science and Management of Data,

page 171–179, New York, NY, USA, 2019. Association for Computing Machinery.

660 Yong Liu, Xuexin Qi, Jiali Zhang, Hui Li, Xin Ge, and Jun Ai. Automatic bug triaging via deep reinforcement learning.

Applied Sciences, 2022.

661 Zhuobing Han, Xiaohong Li, Zhenchang Xing, Hongtao Liu, and Zhiyong Feng. Learning to predict severity of software

vulnerability using only vulnerability description. In 2017 IEEE International conference on software maintenance and

evolution (ICSME), pages 125–136. IEEE, 2017.

662 Luiz Alberto Ferreira Gomes, Ricardo da Silva Torres, and Mario Lúcio Côrtes. Bug report severity level prediction in open

source software: A survey and research opportunities. Information and software technology, 115:58–78, 2019.

663 Yuki Noyori, Hironori Washizaki, Yoshiaki Fukazawa, Keishi Ooshima, Hideyuki Kanuka, and Shuhei Nojiri. Deep learning

and gradient-based extraction of bug report features related to bug fixing time. Frontiers in Computer Science, 5:1032440,

2023.

664 Haoran Liu, Yue Yu, Shanshan Li, Mingyang Geng, Xiaoguang Mao, and Xiangke Liao. How to cherry pick the bug report

for better summarization? Empirical Software Engineering, 26:1–36, 2021.

665 Haoran Liu, Yue Yu, Shanshan Li, Yong Guo, Deze Wang, and Xiaoguang Mao. Bugsum: Deep context understanding

for bug report summarization. In Proceedings of the 28th International Conference on Program Comprehension, pages

94–105, 2020.

666 Songqiang Chen, Xiaoyuan Xie, Bangguo Yin, Yuanxiang Ji, Lin Chen, and Baowen Xu. Stay professional and efficient:

automatically generate titles for your bug reports. In Proceedings of the 35th IEEE/ACM International Conference on

Automated Software Engineering, pages 385–397, 2020.

667 Hao Lin, Xiang Chen, Xuejiao Chen, Zhanqi Cui, Yun Miao, Shan Zhou, Jianmin Wang, and Zhan Su. Gen-FL: Quality

prediction-based filter for automated issue title generation. Journal of Systems and Software, 195:111513, 2023.

668 Yan Xiao, Jacky Keung, Kwabena E Bennin, and Qing Mi. Improving bug localization with word embedding and enhanced

convolutional neural networks. Information and Software Technology, 105:17–29, 2019.

669 Yan Xiao, Jacky Keung, Qing Mi, and Kwabena E Bennin. Improving bug localization with an enhanced convolutional

neural network. In 2017 24th Asia-Pacific Software Engineering Conference (APSEC), pages 338–347. IEEE, 2017.

670 Bei Wang, Ling Xu, Meng Yan, Chao Liu, and Ling Liu. Multi-dimension convolutional neural network for bug localization.

IEEE Transactions on Services Computing, 15(3):1649–1663, 2020.

671 An Ngoc Lam, Anh Tuan Nguyen, Hoan Anh Nguyen, and Tien N Nguyen. Bug localization with combination of deep

learning and information retrieval. In 2017 IEEE/ACM 25th International Conference on Program Comprehension

(ICPC), pages 218–229. IEEE, 2017.

672 Shasha Cheng, Xuefeng Yan, and Arif Ali Khan. A similarity integration method based information retrieval and word

embedding in bug localization. In 2020 IEEE 20th International Conference on Software Quality, Reliability and Security

(QRS), pages 180–187. IEEE, 2020.

673 An Ngoc Lam, Anh Tuan Nguyen, Hoan Anh Nguyen, and Tien N Nguyen. Combining deep learning with information

retrieval to localize buggy files for bug reports (n). In 2015 30th IEEE/ACM International Conference on Automated

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 96

Software Engineering (ASE), pages 476–481. IEEE, 2015.

674 Pablo Loyola, Kugamoorthy Gajananan, and Fumiko Satoh. Bug localization by learning to rank and represent bug inducing

changes. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management, pages

657–665, 2018.

675 Ziye Zhu, Yun Li, Hanghang Tong, and Yu Wang. Cooba: Cross-project bug localization via adversarial transfer learning.

In IJCAI, 2020.

676 Jiaxuan Han, Cheng Huang, Siqi Sun, Zhonglin Liu, and Jiayong Liu. bjXnet: an improved bug localization model based

on code property graph and attention mechanism. Automated Software Engineering, 30(1):12, 2023.

677 Hongliang Liang, Dengji Hang, and Xiangyu Li. Modeling function-level interactions for file-level bug localization. Empirical

Software Engineering, 27(7):186, 2022.

678 Morakot Choetkiertikul, Hoa Khanh Dam, Truyen Tran, Trang Pham, Chaiyong Ragkhitwetsagul, and Aditya Ghose. Au-

tomatically recommending components for issue reports using deep learning. Empirical Software Engineering, 26:1–39,

2021.

679 Xuan Huo, Ferdian Thung, Ming Li, David Lo, and Shu-Ting Shi. Deep transfer bug localization. IEEE Transactions on

software engineering, 47(7):1368–1380, 2019.

680 Marlo Haering, Christoph Stanik, and Walid Maalej. Automatically matching bug reports with related app reviews. In

2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE), pages 970–981. IEEE, 2021.

681 Hang Ruan, Bihuan Chen, Xin Peng, and Wenyun Zhao. DeepLink: Recovering issue-commit links based on deep learning.

Journal of Systems and Software, 158:110406, 2019.

682 Rui Xie, Long Chen, Wei Ye, Zhiyu Li, Tianxiang Hu, Dongdong Du, and Shikun Zhang. Deeplink: A code knowledge graph

based deep learning approach for issue-commit link recovery. In 2019 IEEE 26th International Conference on Software

Analysis, Evolution and Reengineering (SANER), pages 434–444. IEEE, 2019.

683 Sun-Ro Lee, Min-Jae Heo, Chan-Gun Lee, Milhan Kim, and Gaeul Jeong. Applying deep learning based automatic bug

triager to industrial projects. In Proceedings of the 2017 11th Joint Meeting on foundations of software engineering, pages

926–931, 2017.

684 Shengqu Xi, Yuan Yao, Xusheng Xiao, Feng Xu, and Jian Lu. An effective approach for routing the bug reports to the right

fixers. In Proceedings of the 10th Asia-Pacific Symposium on Internetware, pages 1–10, 2018.

685 Wei Fu and Tim Menzies. Easy over hard: A case study on deep learning. In Proceedings of the 2017 11th Joint Meeting on

Foundations of Software Engineering, ESEC/FSE 2017, page 49–60, New York, NY, USA, 2017. Association for Computing

Machinery.

686 Eeshita Biswas, K. Vijay-Shanker, and Lori Pollock. Exploring word embedding techniques to improve sentiment analysis

of software engineering texts. MSR ’19, page 68–78. IEEE Press, 2019.

687 Zeeshan Ahmed Nizamani, Hui Liu, David Matthew Chen, and Zhendong Niu. Automatic approval prediction for software

enhancement requests. Automated Software Engineering, 25:347–381, 2018.

688 Xiaochen Li, He Jiang, Yasutaka Kamei, and Xin Chen. Bridging semantic gaps between natural languages and APIs with

word embedding. IEEE Transactions on Software Engineering, 46(10):1081–1097, 2018.

689 Minsoo Rhu, Natalia Gimelshein, Jason Clemons, Arslan Zulfiqar, and Stephen W. Keckler. VDNN: Virtualized deep neural

networks for scalable, memory-efficient neural network design. In The 49th Annual IEEE/ACM International Symposium

on Microarchitecture, MICRO-49, 2016.

690 Linnan Wang, Jinmian Ye, Yiyang Zhao, Wei Wu, Ang Li, Shuaiwen Leon Song, Zenglin Xu, and Tim Kraska. Superneurons:

Dynamic GPU memory management for training deep neural networks. In Proceedings of the 23rd ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, PPoPP ’18, page 41–53, New York, NY, USA, 2018.

Association for Computing Machinery.

691 Kevin Moran, Carlos Bernal-Cárdenas, Michael Curcio, Richard Bonett, and Denys Poshyvanyk. Machine learning-based

prototyping of graphical user interfaces for mobile apps. IEEE Transactions on Software Engineering, 46(2):196–221, 2018.

692 Trong Duc Nguyen, Anh Tuan Nguyen, Hung Dang Phan, and Tien N Nguyen. Exploring API embedding for API usages

and applications. In 2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE), pages 438–449.

IEEE, 2017.

693 Yao Wan, Zhou Zhao, Min Yang, Guandong Xu, Haochao Ying, Jian Wu, and Philip S Yu. Improving automatic source

code summarization via deep reinforcement learning. In Proceedings of the 33rd ACM/IEEE international conference on

automated software engineering, pages 397–407, 2018.

694 Frederick P. Brooks. The mythical man-month. In Reliable Software, 1975.

695 Audris Mockus and James D. Herbsleb. Expertise browser: A quantitative approach to identifying expertise. In Proceedings

of the 24th International Conference on Software Engineering, ICSE ’02, pages 503–512, New York, NY, USA, 2002. ACM.

696 John Anvik, Lyndon Hiew, and Gail C. Murphy. Who should fix this bug? In Proceedings of the 28th International

Conference on Software Engineering, ICSE ’06, pages 361–370, New York, NY, USA, 2006. ACM.

697 D. Ma, D. Schuler, T. Zimmermann, and J. Sillito. Expert recommendation with usage expertise. In 2009 IEEE Interna-

tional Conference on Software Maintenance, pages 535–538, Sept 2009.

698 Minghui Zhou and Audris Mockus. Developer fluency: Achieving true mastery in software projects. In Proceedings of the

Eighteenth ACM SIGSOFT International Symposium on Foundations of Software Engineering, FSE ’10, pages 137–146,

New York, NY, USA, 2010. ACM.

699 Thomas Fritz, Gail C. Murphy, Emerson Murphy-Hill, Jingwen Ou, and Emily Hill. Degree-of-knowledge: Modeling a

developer’s knowledge of code. ACM Trans. Softw. Eng. Methodol., 23(2):14:1–14:42, April 2014.

700 Mitchell Joblin, Wolfgang Mauerer, Sven Apel, Janet Siegmund, and Dirk Riehle. From developer networks to verified

communities: a fine-grained approach. In Proceedings of the 37th International Conference on Software Engineering-

Volume 1, pages 563–573. IEEE Press, 2015.

701 Xiaozhu Meng, Barton P Miller, William R Williams, and Andrew R Bernat. Mining software repositories for accurate

authorship. In Software Maintenance (ICSM), 2013 29th IEEE International Conference on, pages 250–259. IEEE, 2013.

702 Sebastian Baltes and Stephan Diehl. Towards a theory of software development expertise. CoRR, abs/1807.06087, 2018.

703 Jinglei Ren, Hezheng Yin, Qingda Hu, Armando Fox, and Wojciech Koszek. Towards quantifying the development value of

code contributions. In Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference

and Symposium on the Foundations of Software Engineering, pages 775–779. ACM, 2018.

704 Rahul Venkataramani, Atul Gupta, Allahbaksh Asadullah, Basavaraju Muddu, and Vasudev Bhat. Discovery of technical

expertise from open source code repositories. In Proceedings of the 22nd International Conference on World Wide Web,

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 97

pages 97–98. ACM, 2013.

705 Rohit Saxena and Niranjan Pedanekar. I know what you coded last summer: Mining candidate expertise from github repos-

itories. In Companion of the 2017 ACM Conference on Computer Supported Cooperative Work and Social Computing,

pages 299–302. ACM, 2017.

706 Siyuan Liu, Shuhui Wang, Feida Zhu, Jinbo Zhang, and Ramayya Krishnan. Hydra: Large-scale social identity linkage via

heterogeneous behavior modeling. In Proceedings of the 2014 ACM SIGMOD international conference on Management

of data, pages 51–62. ACM, 2014.

707 Erik Kouters, Bogdan Vasilescu, Alexander Serebrenik, and Mark GJ van den Brand. Who’s who in gnome: Using lsa to

merge software repository identities. In Software Maintenance (ICSM), 2012 28th IEEE International Conference on,

pages 592–595. IEEE, 2012.

708 Wenkai Mo, Beijun Shen, Yuting Chen, and Jiangang Zhu. Tbil: A tagging-based approach to identity linkage across

software communities. In Software Engineering Conference (APSEC), 2015 Asia-Pacific, pages 56–63. IEEE, 2015.

709 Roy Ka-Wei Lee and David Lo. Github and stack overflow: Analyzing developer interests across multiple social collaborative

platforms. In Social Informatics - 9th International Conference, SocInfo 2017, Oxford, UK, September 13-15, 2017,

Proceedings, Part II, pages 245–256, 2017.

710 Weizhi Huang, Wenkai Mo, Beijun Shen, Yu Yang, and Ning Li. Cpdscorer: Modeling and evaluating developer programming

ability across software communities. In SEKE, pages 87–92, 2016.

711 Jiafei Yan, Hailong Sun, Xu Wang, Xudong Liu, and Xiaotao Song. Profiling developer expertise across software communities

with heterogeneous information network analysis. In Proceedings of the Tenth Asia-Pacific Symposium on Internetware,

Internetware 2018, Beijing, China, September 16-16, 2018, pages 2:1–2:9. ACM, 2018.

712 João Eduardo Montandon, Marco Tulio Valente, and Luciana L Silva. Mining the technical roles of github users. Information

and Software Technology, 131:106485, 2021.

713 Xiaotao Song, Jiafei Yan, Yuexin Huang, Hailong Sun, and Hongyu Zhang. A collaboration-aware approach to profiling

developer expertise with cross-community data. 2022 IEEE 22nd International Conference on Software Quality, Reliability

and Security (QRS), pages 344–355, 2022.

714 Tapajit Dey, Andrey Karnauch, and Audris Mockus. Representation of developer expertise in open source software. 2021

IEEE/ACM 43rd International Conference on Software Engineering (ICSE), pages 995–1007, 2020.

715 Yuxing Ma, Chris Bogart, Sadika Amreen, Russell L. Zaretzki, and Audris Mockus. World of code: An infrastructure

for mining the universe of open source vcs data. 2019 IEEE/ACM 16th International Conference on Mining Software

Repositories (MSR), pages 143–154, 2019.

716 Arghavan Moradi Dakhel, Michel C. Desmarais, and Foutse Khomh. Dev2vec: Representing domain expertise of developers

in an embedding space. Inf. Softw. Technol., 159:107218, 2022.

717 Farooq Javeed, Ansar Siddique, Akhtar Munir, Basit Shehzad, and Muhammad Ikram Lali. Discovering software developer’s

coding expertise through deep learning. IET Softw., 14:213–220, 2020.

718 Zizhe Wang, Hailong Sun, Yang Fu, and Luting Ye. Recommending crowdsourced software developers in consideration of

skill improvement. In 2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE), pages

717–722, 2017.

719 Zhenyu Zhang, Hailong Sun, and Hongyu Zhang. Developer recommendation for topcoder through a meta-learning based

policy model. Empirical Software Engineering, 25:859 – 889, 2019.

720 Xu Yu, Yadong He, Yu Fu, Yu Xin, Junwei Du, and Weijian Ni. Cross-domain developer recommendation algorithm based on

feature matching. In CCF Conference on Computer Supported Cooperative Work and Social Computing, pages 443–457.

Springer, 2019.

721 Junjie Wang, Ye Yang, Song Wang, Chunyang Chen, Dandan Wang, and Qing Wang. Context-aware personalized crowdtest-

ing task recommendation. IEEE Transactions on Software Engineering, 48:3131–3144, 2021.

722 Junjie Wang, Ye Yang, Song Wang, Jun Hu, and Qing Wang. Context- and fairness-aware in-process crowdworker recom-

mendation. ACM Transactions on Software Engineering and Methodology (TOSEM), 31:1 – 31, 2022.

723 Haochao Ying, Liang Chen, Tingting Liang, and Jian Wu. Earec: leveraging expertise and authority for pull-request reviewer

recommendation in github. In Proceedings of the 3rd International Workshop on CrowdSourcing in Software Engineering,

pages 29–35. ACM, 2016.

724 Jing Jiang, Yun Yang, Jiahuan He, Xavier Blanc, and Li Zhang. Who should comment on this pull request? analyzing

attributes for more accurate commenter recommendation in pull-based development. Information and Software Technology,

2017.

725 Jiyang Zhang, Chandra Shekhar Maddila, Ramakrishna Bairi, Christian Bird, Ujjwal Raizada, Apoorva Agrawal, Yamini

Jhawar, Kim Herzig, and Arie van Deursen. Using large-scale heterogeneous graph representation learning for code review

recommendations at microsoft. 2023 IEEE/ACM 45th International Conference on Software Engineering: Software

Engineering in Practice (ICSE-SEIP), pages 162–172, 2022.

726 Soumaya Rebai, Abderrahmen Amich, Somayeh Molaei, Marouane Kessentini, and Rick Kazman. Multi-objective code

reviewer recommendations: balancing expertise, availability and collaborations. Automated Software Engineering, 27:301

– 328, 2020.

727 Motahareh Bahrami Zanjani, Huzefa H. Kagdi, and Christian Bird. Automatically recommending peer reviewers in modern

code review. IEEE Transactions on Software Engineering, 42:530–543, 2016.

728 Christoph Hannebauer, Michael Patalas, Sebastian Stünkel, and Volker Gruhn. Automatically recommending code reviewers

based on their expertise: An empirical comparison. 2016 31st IEEE/ACM International Conference on Automated

Software Engineering (ASE), pages 99–110, 2016.

729 Guoping Rong, Yifan Zhang, Lanxin Yang, Fuli Zhang, Hongyu Kuang, and He Zhang. Modeling review history for reviewer

recommendation: A hypergraph approach. 2022 IEEE/ACM 44th International Conference on Software Engineering

(ICSE), pages 1381–1392, 2022.

730 Vladimir Kovalenko, Nava Tintarev, Evgeny Pasynkov, Christian Bird, and Alberto Bacchelli. Does reviewer recommenda-

tion help developers. IEEE Transactions on Software Engineering, 46:710–731, 2020.

731 Md Ahasanuzzaman, Gustavo Ansaldi Oliva, and Ahmed E. Hassan. Using knowledge units of programming languages to

recommend reviewers for pull requests: An empirical study. ArXiv, abs/2305.05654, 2023.

732 Pavĺına Wurzel Gonçalves, Gül Çalikli, Alexander Serebrenik, and Alberto Bacchelli. Competencies for code review. Pro-

ceedings of the ACM on Human-Computer Interaction, 7:1 – 33, 2023.

733 Yuexin Huang and Hailong Sun. Best answerers prediction with topic based gat in q&a sites. In 12th Asia-Pacific

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

Sci China Inf Sci 98

Symposium on Internetware, pages 156–164, 2020.

734 Yiqiao Jin, Yunsheng Bai, Yanqiao Zhu, Yizhou Sun, and Wei Wang. Code recommendation for open source software

developers. Proceedings of the ACM Web Conference 2023, 2022.

735 Wenxin Xiao, Hao He, Weiwei Xu, Xin Tan, Jinhao Dong, and Minghui Zhou. Recommending good first issues in github

oss projects. 2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE), pages 1830–1842, 2022.

736 Fábio Santos. Supporting the task-driven skill identification in open source project issue tracking systems. ACM SIGSOFT

Software Engineering Notes, 48:54 – 58, 2022.

737 Catarina Costa, Jair Figueirêdo, João Felipe Pimentel, Anita Sarma, and Leonardo Murta. Recommending participants for

collaborative merge sessions. IEEE Transactions on Software Engineering, 47(6):1198–1210, 2021.

738 Kattiana Constantino and Eduardo Figueiredo. Coopfinder: Finding collaborators based on co–changed files. In 2022 IEEE

Symposium on Visual Languages and Human-Centric Computing (VL/HCC), pages 1–3, 2022.

739 Kattiana Fernandes Constantino, Fabiano Muniz Belém, and Eduardo Figueiredo. Dual analysis for helping developers to

find collaborators based on co-changed files: An empirical study. Software: Practice and Experience, 53:1438 – 1464, 2023.

740 Didi Surian, Nian Liu, David Lo, Hanghang Tong, Ee-Peng Lim, and Christos Faloutsos. Recommending people in developers’

collaboration network. In 2011 18th Working Conference on Reverse Engineering, pages 379–388, 2011.

741 Gerardo Canfora, Massimiliano Di Penta, Rocco Oliveto, and Sebastiano Panichella. Who is going to mentor newcomers

in open source projects? In Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations of

Software Engineering, FSE ’12, New York, NY, USA, 2012. Association for Computing Machinery.

742 Luting Ye, Hailong Sun, Xu Wang, and Jiaruijue Wang. Personalized teammate recommendation for crowdsourced software

developers. In 2018 33rd IEEE/ACM International Conference on Automated Software Engineering (ASE), pages 808–

813, 2018.

743 Yuxing Ma, Chris Bogart, Sadika Amreen, Russell Zaretzki, and Audris Mockus. World of code: An infrastructure for

mining the universe of open source vcs data. In 2019 IEEE/ACM 16th International Conference on Mining Software

Repositories (MSR), pages 143–154, 2019.

744 Tanner Fry, Tapajit Dey, Andrey Karnauch, and Audris Mockus. A dataset and an approach for identity resolution of 38

million author ids extracted from 2b git commits. CoRR, abs/2003.08349, 2020.

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-023-4127-5

	Introduction
	Related Work
	Requirements Engineering
	Requirements Elicitation
	Requirements Generation
	Requirements Analysis
	Smelly Requirements Detection
	Requirements Classification
	Requirements Traceability
	DL Models
	Datasets
	Challenges and Opportunities
	Challenges
	Opportunities

	Code Generation
	Enhancing Code Structure Information
	Special Code Generation
	Multi-mode based Code Generation
	Compilability
	Dual-Learning based Code Generation
	Code Generation on Top of Existing Code
	Context-aware Code Generation
	Practicality
	Long Dependency
	Code Completion
	Empirical Studies
	Datasets
	Challenges and Opportunities
	Challenges
	Opportunities

	Code Search
	Natural Language based Code Search
	Information Retrieval
	Deep Learning
	Query Expansion and Refinement

	Code-to-Code Search
	Datasets
	Challenges and Opportunities
	Challenges
	Opportunities

	Code Summarization
	Using source code sequences as model input
	Using AST sequences as model input
	Using tree structure as model input
	Using graph structure as model input
	Considering other sources of information
	Datasets
	Challenges and Opportunities
	Challenges
	Opportunities

	Software Refactoring
	Detection of Code Smells
	Recommendation of Refactoring Opportunities
	Datasets
	Challenges and Opportunities
	Challenges
	Opportunities

	Code Clone Detection
	Source code clone detection
	Code representation learning for clone detection
	Cross-language code clone detection
	Binary code clone detection
	Clone evaluation and validation
	Datasets
	Challenges and Opportunities
	Challenges
	Opportunities

	Software Defect Prediction
	Using manually crafted features as the input
	Using raw source code as the input
	Using abstract syntax trees as the input
	Using graphical representations as the input
	Using hybrid-source information as the input
	Datasets
	Challenges and Opportunities
	Challenges
	Opportunities

	Bug Finding
	Static Bug-finding: Program Analysis
	Code proofreading
	Semantic analysis

	Dynamic Bug-finding: Software Testing
	Test oracle
	Test input generation

	Proving Bug-freedom: Formal Verification
	Searching for needles in the haystack
	Providing a checkable proof

	Case Study: Vulnerability Detection
	Static Vulnerability Detection
	Dynamic Vulnerability Detection

	Datasets
	Challenges and Opportunities
	Challenges
	Opportunities

	Fault Localization
	Fault Localization Approaches
	Data Augmentation and Data Processing Approaches for Fault Localization
	Evaluation Metrics
	Datasets
	Challenges and Opportunities
	Challenges
	Opportunities

	Program Repair
	Compilation Error Repair
	Runtime Error Repair
	Specific Domain Error Repair
	Datasets
	Challenges and Opportunities
	Challenges
	Opportunities

	Bug Report Management
	Bug report refinement
	Duplicate bug detection
	Bug assignment
	Bug severity/priority prediction
	Bug fixing time prediction
	Bug report summarization
	Bug localization
	Bug-Commit linking
	Datasets
	Challenges and opportunity
	Challenges
	Opportunities

	Developer Collaboration
	Developer Expertise Profiling
	Intelligent Task Assignment
	Crowdsourcing developer recommendation
	Reviewer recommendation
	Other tasks

	Development Team Formation
	Datasets
	Challenges and Opportunities
	Challenges
	Opportunities

	Conclusion

